满分5 > 高中数学试题 >

已知函数,a∈R. (Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线与直线x...

已知函数manfen5.com 满分网,a∈R.
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线与直线x+2y=0垂直,求a的值;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)当a=1,且x≥2时,证明:f(x-1)≤2x-5.
(Ⅰ)导数在切点处的导数值是切线斜率,垂直的直线斜率互为负倒数. (Ⅱ)导数大于0,对应区间为单调递增区间;导数小于0,对应区间为单调递减区间 (Ⅲ)用导数研究函数的单调性,求函数的最值,证明不等式. 【解析】 (Ⅰ)函数f(x)的定义域为{x|x>0},. 又曲线y=f(x)在点(1,f(1))处的切线与直线x+2y=0垂直, 所以f'(1)=a+1=2, 即a=1. (Ⅱ)由于. 当a≥0时,对于x∈(0,+∞),有f'(x)>0在定义域上恒成立, 即f(x)在(0,+∞)上是增函数. 当a<0时,由f'(x)=0,得. 当时,f'(x)>0,f(x)单调递增; 当时,f'(x)<0,f(x)单调递减. (Ⅲ)当a=1时,x∈[2,+∞). 令.. 当x>2时,g′(x)<0,g(x)在(2,+∞)单调递减. 又g(2)=0,所以g(x)在(2,+∞)恒为负. 所以当x∈[2,+∞)时,g(x)≤0. 即. 故当a=1,且x≥2时,f(x-1)≤2x-5成立.
复制答案
考点分析:
相关试题推荐
某企业投入81万元经销某产品,经销时间共60个月,市场调研表明,该企业在经销这个产品期间第x个月的利润manfen5.com 满分网(单位:万元),为了获得更多的利润,企业将每月获得的利润投入到次月的经营中,记第x个月的当月利润率manfen5.com 满分网,例如:manfen5.com 满分网
(1)求g(10);
(2)求第x个月的当月利润率g(x);
(3)该企业经销此产品期间,哪个月的当月利润率最大,并求该月的当月利润率.
查看答案
等差数列{an}中,a1=3,前n项和为Sn,等比数列{bn}各项均为正数,b1=1,且b2+S2=12,{bn}的公比manfen5.com 满分网
(1)求an与bn
(2)证明:manfen5.com 满分网小于manfen5.com 满分网
查看答案
△ABC的面积是30,内角A,B,C所对边长分别为a,b,c,cosA=manfen5.com 满分网
(Ⅰ)求manfen5.com 满分网manfen5.com 满分网
(Ⅱ)若c-b=1,求a的值.
查看答案
已知实数x满足2x2≤3x,求函数f(x)=(k2+1)x2-2(k2+1)x+3(k∈R)的最小值和最大值.
查看答案
已知p:x∈A={x|x2-2x-3≤0,x∈R},q:x∈B={x|m-2≤x≤m+2,m∈R}.
(1)若A∩B=[0,3],求实数m的值;
(2)若p是¬q的充分条件,求实数m的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.