由不等式x2-2ax+a>0对x∈R恒成立,我们可以得到0<a<1,则我们可以根据指数函数的单调性,将不等式a2t+1<at2+2t-3转化成一个关于t的整式不等式,解不等式即可得到不等式a2t+1<at2+2t-3的解集.
【解析】
∵若不等式x2-2ax+a>0对x∈R恒成立
∴△=4a2-4a<0
即0<a<1
此时,y=ax为减函数
又∵a2t+1<at2+2t-3
∴2t+1>t2+2t-3
即t2-4<0
解得-2<t<2
故不等式a2t+1<at2+2t-3的解集为(-2,2)
故答案为:(-2,2)