满分5 > 高中数学试题 >

已知等差数列{an}为递增数列,且a2,a5是方程x2-12x+27=0的两根,...

已知等差数列{an}为递增数列,且a2,a5是方程x2-12x+27=0的两根,数列{bn}的前n项和manfen5.com 满分网
(1)分别写出数列{an}和{bn}的通项公式;
(2)记cn=an+1bn+1,求证:数列{cn}为递减数列.
(1)通过解二次方程求出方程的两个根,据数列{an}为递增数列为递增数列,求出a2,a5,利用等差数列的通项公式求出 数列{an}的公差,利用等差数列推广的通项公式求出其通项,利用数列{bn}的前n项和与通项的关系求出数列{bn}的通项. (2)求出数列{cn}的通项,求出cn+1-cn的差,判断出差的符号,得证. 【解析】 (1)由题意得a2=3,a5=8 公差 所以an=a2+(n-2)d=2n+1 由得 当 当n≥2时 得 所以 (2)由(1)得 ∴ 数列{cn}减数列
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网,数列an满足a1=1,an+1=f(an)(n∈N*).
(1)求数列{an}的通项公式;
(2)记Sn=a1a2+a2a3+…+anan+1,求Sn
查看答案
已知函数manfen5.com 满分网,且给定条件p:“manfen5.com 满分网”,
(1)求f(x)的最大值及最小值
(2)若又给条件q:“|f(x)-m|<2“且p是q的充分条件,求实数m的取值范围.
查看答案
已知manfen5.com 满分网
(Ⅰ)求tanx的值;
(Ⅱ)求manfen5.com 满分网的值.
查看答案
定义在R上的函数f(x),对任意实数x∈R,都有f(x+1)=f(x)+1成立,且f(1)=2,记an=f(n)(n∈N*),则a2010=    查看答案
数列{an}中,manfen5.com 满分网是等差数列,则a11=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.