满分5 > 高中数学试题 >

已知函数(a>0,a≠1)是奇函数. (1)求实数m的值; (2)判断函数f(x...

已知函数manfen5.com 满分网(a>0,a≠1)是奇函数.
(1)求实数m的值;
(2)判断函数f(x)在(1,+∞)上的单调性,并给出证明;
(3)当x∈(n,a-2)时,函数f(x)的值域是(1,+∞),求实数a与n的值.
(1)根据奇函数的定义可知f(-x)+f(x)=0,建立关于m的等式关系,解之即可; (2)先利用函数单调性的定义研究真数的单调性,讨论a的取值,然后根据复合函数的单调性进行判定; (3)先求函数的定义域,讨论(n,a-2)与定义域的关系,然后根据单调性建立等量关系,求出n和a的值. 【解析】 (1)∵函数(a>0,a≠1)是奇函数. ∴f(-x)+f(x)=0解得m=-1. (2)由(1)及题设知:, 设, ∴当x1>x2>1时, ∴t1<t2. 当a>1时,logat1<logat2,即f(x1)<f(x2). ∴当a>1时,f(x)在(1,+∞)上是减函数. 同理当0<a<1时,f(x)在(1,+∞)上是增函数. (3)由题设知:函数f(x)的定义域为(1,+∞)∪(-∞,-1), ∴①当n<a-2≤-1时,有0<a<1.由(1)及(2)题设知:f(x)在为增函数,由其值域为(1,+∞)知(无解); ②当1≤n<a-2时,有a>3.由(1)及(2)题设知:f(x)在(n,a-2)为减函数,由其值域为(1,+∞)知 得,n=1.
复制答案
考点分析:
相关试题推荐
已知函数f(x)的定义域为R,对任意的x1,x2都满足f(x1+x2)=f(x1)+f(x2),
当x<0时,f(x)<0.
(1)判断f(x)的单调性;
(2)判断f(x)的奇偶性;
(3)是否存在这样的实数m,当manfen5.com 满分网,使不等式f[cos2θ-(2+m)sinθ]+f(3+2m)>0对所有θ恒成立,若存在,求出m的取值范围;若不存在,说明理由.
查看答案
如图,某小区准备在一直角围墙ABC内的空地上植造一块“绿地△ABD”,其中AB长为定值a,BD长可根据需要进行调节(BC足够长).现规划在△ABD的内接正方形BEFG内种花,其余地方种草,且把种草的面积S1与种花的面积S2manfen5.com 满分网称为“草花比y”.设∠DAB=θ,正方形BEFG的边长为x.
(1)用θ表示x.
(2)将y表示为θ的函数关系式;
(3)若manfen5.com 满分网,求 y的取值范围.

manfen5.com 满分网 查看答案
在直角坐标系中,已知点P(x,y).O为坐标原点.
(1)若manfen5.com 满分网(其中a、b、r是常数,且r>0),求证:(x-a)2+(y-b)2=r2
(2)若点A(2,4),M(2x-1,22y-1),N(4y,2x),manfen5.com 满分网,求u=manfen5.com 满分网的取值范围.
查看答案
函数manfen5.com 满分网,其图象过点(manfen5.com 满分网).
(I)求φ的值;
(Ⅱ)将函数y=f(x)的图象上各点的横坐标缩短到原来的manfen5.com 满分网,纵坐标不变,得到函数y=g(x)的图象,求函数y=g(x)的周期与单调递减区间.
查看答案
已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}.
(1)若A∩B=[0,3],求实数m的值;
(2)若A⊆∁RB,求实数m的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.