本题是典型的利用函数的导数求最值的问题,只需要利用已知函数的最大值为3,进而求出常数a的值,即可求出函数的最小值.
【解析】
由已知,f′(x)=3x2-3x,有3x2-3x≥0得x≥1或x≤0,
因此当x∈[1,+∞),(-∞,0]时f(x)为增函数,在x∈[0,1]时f(x)为减函数,
又因为x∈[-1,1],
所以得当x∈[-1,0]时f(x)为增函数,在x∈[0,1]时f(x)为减函数,
所以f(x)max=f(0)=a=3,故有f(x)=x3-x2+3
所以f(-1)=,f(1)=
因为f(-1)=<f(1)=,所以函数f(x)的最小值为f(-1)=.
故答案为:.