满分5 > 高中数学试题 >

已知函数(a∈R). (Ⅰ)当时,讨论f(x)的单调性; (Ⅱ)设g(x)=x2...

已知函数manfen5.com 满分网(a∈R).
(Ⅰ)当manfen5.com 满分网时,讨论f(x)的单调性;
(Ⅱ)设g(x)=x2-2bx+4.当manfen5.com 满分网时,若对任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),求实数b取值范围.
(Ⅰ)直接利用函数与导数的关系,求出函数的导数,再讨论函数的单调性; (Ⅱ)利用导数求出f(x)的最小值、利用二次函数知识或分离常数法求出g(x)在闭区间[1,2]上的最大值,然后解不等式求参数. 【解析】 (Ⅰ), 令h(x)=ax2-x+1-a(x>0) (1)当a=0时,h(x)=-x+1(x>0), 当x∈(0,1),h(x)>0,f′(x)<0,函数f(x)单调递减; 当x∈(1,+∞),h(x)<0,f′(x)>0,函数f(x)单调递增. (2)当a≠0时,由f′(x)=0,即ax2-x+1-a=0,解得. 当时x1=x2,h(x)≥0恒成立,此时f′(x)≤0,函数f(x)单调递减; 当时,,x∈(0,1)时h(x)>0,f′(x)<0,函数f(x)单调递减; 时,h(x)<0,f′(x)>0,函数f(x)单调递增; 时,h(x)>0,f′(x)<0,函数f(x)单调递减. 当a<0时,当x∈(0,1),h(x)>0,f′(x)<0,函数f(x)单调递减; 当x∈(1,+∞),h(x)<0,f′(x)>0,函数f(x)单调递增. 综上所述:当a≤0时,函数f(x)在(0,1)单调递减,(1,+∞)单调递增; 当时x1=x2,h(x)≥0恒成立,此时f′(x)≤0,函数f(x)在(0,+∞)单调递减; 当时,函数f(x)在(0,1)单调递减,单调递增,单调递减. (Ⅱ)当时,f(x)在(0,1)上是减函数,在(1,2)上是增函数,所以对任意x1∈(0,2), 有, 又已知存在x2∈[1,2],使f(x1)≥g(x2),所以,x2∈[1,2],(※) 又g(x)=(x-b)2+4-b2,x∈[1,2] 当b<1时,g(x)min=g(1)=5-2b>0与(※)矛盾; 当b∈[1,2]时,g(x)min=g(b)=4-b2≥0也与(※)矛盾; 当b>2时,. 综上,实数b的取值范围是.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,某小区准备在一直角围墙ABC内的空地上植造一块“绿地△ABD”,其中AB长为定值a,BD长可根据需要进行调节(BC足够长).现规划在△ABD的内接正方形BEFG内种花,其余地方种草,且把种草的面积S1与种花的面积S2的比值manfen5.com 满分网称为“草花比y”.
(Ⅰ)设∠DAB=θ,将y表示成θ的函数关系式;
(Ⅱ)当BE为多长时,y有最小值,最小值是多少.
查看答案
在△ABC中,内角A、B、C的对边分别为a、b、c,D、E分别为AB、BC的中点,且manfen5.com 满分网manfen5.com 满分网=manfen5.com 满分网manfen5.com 满分网
(1)求证:a2,b2,c2成等差数列;
(2)求∠B及sinB+cosB的取值范围.
查看答案
已知函数manfen5.com 满分网,其图象过点(manfen5.com 满分网manfen5.com 满分网).
(1)求φ的值及y=f(x)最小正周期;
(2)将函数y=f(x)的图象上各点的横坐标缩短到原来的manfen5.com 满分网,纵坐标不变,得到函数y=g(x)的图象,求函数PF2在[0,manfen5.com 满分网]上的最大值和最小值.
查看答案
已知等差数列{an}满足:a3=7,a5+a7=26.{an}的前n项和为Sn
(Ⅰ)求an及Sn
(Ⅱ)令manfen5.com 满分网(n∈N*),求数列{bn}的前n项和Tn
查看答案
平面向量manfen5.com 满分网,已知manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网,求manfen5.com 满分网的坐标及manfen5.com 满分网夹角.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.