满分5 > 高中数学试题 >

如图,几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD. ...

如图,几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.
(Ⅰ)求证:BE=DE;
(Ⅱ)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.

manfen5.com 满分网
(1)设BD中点为O,连接OC,OE,则CO⊥BD,CE⊥BD,于是BD⊥平面OCE,从而BD⊥OE,即OE是BD的垂直平分线,问题解决; (2)证法一:取AB中点N,连接MN,DN,MN,易证MN∥平面BEC,DN∥平面BEC,由面面平行的判定定理即可证得平面DMN∥平面BEC,又DM⊂平面DMN,于是DM∥平面BEC; 证法二:延长AD,BC交于点F,连接EF,易证AB=AF,D为线段AF的中点,连接DM,则DM∥EF,由线面平行的判定定理即可证得结论. 证明:(I)设BD中点为O,连接OC,OE,则由BC=CD知,CO⊥BD, 又已知CE⊥BD,EC∩CO=C, 所以BD⊥平面OCE. 所以BD⊥OE,即OE是BD的垂直平分线, 所以BE=DE. (II)证法一: 取AB中点N,连接MN,DN, ∵M是AE的中点, ∴MN∥BE,又MN⊄平面BEC,BE⊂平面BEC, ∴MN∥平面BEC, ∵△ABD是等边三角形, ∴∠BDN=30°,又CB=CD,∠BCD=120°, ∴∠CBD=30°, ∴ND∥BC, 又DN⊄平面BEC,BC⊂平面BEC, ∴DN∥平面BEC,又MN∩DN=N,故平面DMN∥平面BEC,又DM⊂平面DMN, ∴DM∥平面BEC 证法二:延长AD,BC交于点F,连接EF, ∵CB=CD,∠BCD=120°, ∴∠CBD=30°, ∵△ABD是等边三角形, ∴∠BAD=60°,∠ABC=90°,因此∠AFB=30°, ∴AB=AF, 又AB=AD, ∴D为线段AF的中点,连接DM,DM∥EF,又DM⊄平面BEC,EF⊂平面BEC, ∴DM∥平面BEC
复制答案
考点分析:
相关试题推荐
袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.
(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;
(Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.
查看答案
在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sinB(tanA+tanC)=tanAtanC.
(Ⅰ)求证:a,b,c成等比数列;
(Ⅱ)若a=1,c=2,求△ABC的面积S.
查看答案
如图,在平面直角坐标系xOy中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P的位置在(0,0),圆在x轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,manfen5.com 满分网的坐标为   
manfen5.com 满分网 查看答案
若函数f(x)=ax(a>0,a≠1)在[-1,2]上的最大值为4,最小值为m,且函数manfen5.com 满分网在[0,+∞)上是增函数,则a=    查看答案
如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.