已知是
的平均数,
是
的平均数,
是
的平均数,则下列各式正确的是 (
)
A. B.
C.
D.
设集合,
,则
( )
A. B.
C.
D.
直线的倾斜角为
( )
A.
B.
C.
D.
已知椭圆的离心率为
,以原点为圆心,椭圆的短半轴为半径的圆与直线
相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)设,
,
是椭圆
上关于
轴对称的任意两个不同的点,连结
交椭圆
于另一点
,证明直线
与
轴相交于定点
;
(Ⅲ)在(Ⅱ)的条件下,过点的直线与椭圆
交于
,
两点,求
的取值范围.
已知数列{an}满足an+1=.
(Ⅰ)若方程f(x)=x的解称为函数y=f(x)的不动点,求an+1=f(an)的不动点的值;
(Ⅱ)若a1=2,bn=,求证:数列{bn}是等比数列,并求数列{bn}的通项.
(Ⅲ)当任意nÎN*时,求证:b1+b2+b3+…+bn<
设二次函数f(x)=mx2+nx+t的图像过原点,g(x)=ax3+bx−3(x>0),f(x), g(x)的导函数为,g¢(x),且=0, =−2,f(1)=g(1), =g¢(1).
(Ⅰ)求函数f(x),g(x)的解析式;
(Ⅱ)求F(x)=f(x)−g(x)的极小值;
(Ⅲ)是否存在实常数k和m,使得f(x)³kx+m和g(x)£kx+m成立?若存在,求出k和m的值;若不存在,说明理由.