已知方程,
(1)若此方程表示圆,求的取值范围;
(2)若(1)中的圆与直线相交于
、
两点,且
(
为坐标原点),求
的值;
(3)在(2)的条件下,求以为直径的圆的方程。
已知圆和直线
,
(1)求证:不论取什么值,直线和圆总相交;
(2)求取何值时,直线被圆截得的弦最短,并求出最短弦的长;
如图,在四棱锥-
中,底面
是边长为
的正方形,
、
分别为
、
的中点,侧面
底面
,且
。
(Ⅰ)求证:平面
;
(Ⅱ)求证:平面平面
;
(Ⅲ)求三棱锥-
的体积。
高为的四棱锥
-
的底面是边长为1的正方形,点
、
、
、
、
均在半径为1的同一球面上,则底面
的中心与顶点
之间的距离为__________________。
给定一点及两条直线
,则过点
且与两直线都相切的圆的方程是____________________________________________。
已知点,及⊙
:
。
(Ⅰ)当直线过点
且与圆心
的距离为1时,求直线
的方程;
(Ⅱ)设过点的直线与⊙
交于
、
两点,当
,求以线段
为直径的圆的方程。