满分5 > 初中数学试题 >

如图1,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC在x...

如图1,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=1,OC=2,点D在边OC上且OD=manfen5.com 满分网
(1)求直线AC的解析式;
(2)在y轴上是否存在点P,直线PD与矩形对角线AC交于点M,使得△DMC为等腰三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
(3)抛物线y=-x2经过怎样平移,才能使得平移后的抛物线过点D和点E(点E在y轴的正半轴上),且△ODE沿DE折叠后点O落在边AB上O′处.

manfen5.com 满分网
(1)设直线AC的解析式y=kx+b,将A、C两点坐标代入即可求解; (2)由题意得:若△DMC为等腰三角形,则可分为三种情况讨论,即DC为底;DM为底;CM为底三种情况; (3)可根据对称性求得点O′的坐标,然后求得点E的坐标,由待定系数法求得新抛物线的解析式即可求得. 【解析】 (1)设直线AC的解析式y=kx+b, 又∵OA=1,OC=2, ∴A(0,1),C(2,0)代入函数解析式求得:k=,b=1 直线AC的函数解析式:y= (2)若DC为底边, ∴M的横坐标为, 则点M的坐标为(,) ∴直线DM解析式为:y=x-, ∴P(0,-); 若DM为底,则CD=CM=, ∴AM=AN=-, ∴N(-,1), 可求得直线DM的解析式为y=(+2)x-(+2), ∴P(0,) 若CM为底,则CD=DM= ∴点M的坐标为(,) ∴直线DM的解析式为y=-x+, ∴点P的坐标为(0,) (3)根据对称性可得点O′的坐标为(,1)或(2,1) ∴点E的坐标为(0,)或(0,) ∴设新抛物线的解析式为y=-(x-h)2+k ∴h=,k=或h=,k=, ∴抛物线y=-x2经过向左平移个单位,再向上平移个单位;或向右平移个单位,向上平移个单位.
复制答案
考点分析:
相关试题推荐
(1)|2-tan60°|-(π-3.14)+manfen5.com 满分网+manfen5.com 满分网
(2)已知:y=y1+y2,y1与x2成正比例,y2与x成反比例,且x=1时,y=3;x=-1时,y=1.求x=-manfen5.com 满分网时,y的值.
查看答案
将y=2x2-12x-12变为y=a(x-m)2+n的形式,则m•n=    查看答案
二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如下表,则m的值为   
 x-2-11234
y72-1-2m27
查看答案
二次函数:y=x2+bx+c的图象经过点A(-1,0)、B(3,0)两点,其顶点坐标是    查看答案
某同学利用描点法画二次函数y=ax2+bx+c(a≠0)的图象时,列出的部分数据如下表:经检查,发现表格中恰好有一组数据计算错误,请你根据上述信息写出该二次函数的解析式:   
x1234
y3-23
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.