满分5 > 初中数学试题 >

如图①,AB是⊙O的直径,AC是弦,直线EF和⊙O相切于点C,AD⊥EF,垂足为...

如图①,AB是⊙O的直径,AC是弦,直线EF和⊙O相切于点C,AD⊥EF,垂足为D.
(1)求证:∠DAC=∠BAC;
(2)若把直线EF向上平行移动,如图②,EF交⊙O于G、C两点,若题中的其它条件不变,这时与∠DAC相等的角是哪一个?为什么?
manfen5.com 满分网
(1)连接OC,根据切线的性质定理以及等角的余角相等即可证明; (2)构造直径所对的圆周角,根据等弧所对的圆周角相等以及等角的余角相等,发现∠BAC=∠GAD,再根据等式的性质即可证明∠BAG=∠DAC. (1)证明:连接OC; ∵EF切⊙O于点C, ∴OC⊥EF, ∴∠1+∠4=90°; ∵AD⊥EF, ∴∠3+∠4=90°; 又∵OA=OC, ∴∠1=∠2, ∴∠2=∠3, 即∠DAC=∠BAC. (2)【解析】 ∠BAG=∠DAC,理由如下: 连接BC; ∵AB为⊙O的直径, ∴∠BCA=90°,∠B+∠BAC=90°, ∵∠AGD+∠GAD=90°, 又∵∠B=∠AGD, ∴∠BAC=∠GAD; 即∠BAG+∠GAC=∠GAC+∠DAC, ∴∠BAG=∠DAC.
复制答案
考点分析:
相关试题推荐
如图,AB是⊙O的直径,且AB=10,直线CD交⊙O于C、D两点,交AB于E,OP⊥CD于P,∠PEO=45°,OP=manfen5.com 满分网
(1)求线段CD的长;
(2)试问将直线CD通过怎样的变换才能与⊙O切于B或A.

manfen5.com 满分网 查看答案
如图,AB是⊙O的直径,CB是弦,OD⊥CB于E,交manfen5.com 满分网于D,连接AC
①请写出两个不同类型的正确结论.
②若CB=16,ED=4,求⊙O的半径.

manfen5.com 满分网 查看答案
如图,AB是⊙O的切线,A为切点,AC是⊙O的弦,过O作OH⊥AC于点H.若OH=2,AB=12,BO=13.
求:(1)⊙O的半径;
(2)sin∠OAC的值;
(3)弦AC的长.(结果保留两个有效数字)

manfen5.com 满分网 查看答案
如图1,在等腰梯形ABCD中,AB∥DC,AD=BC=4cm,AB=12cm,CD=8cm点P从A开始沿AB边向B以3cm/s的速度移动,点Q从C开始沿CD边向D以1cm/s的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达终点时,另一点也随之停止运动.设运动时间为t(s).
(1)t为何值时,四边形APQD是平行四边形?
(2)如图2,如果⊙P和⊙Q的半径都是2cm,那么,t为何值时,⊙P和⊙Q外切?
manfen5.com 满分网
查看答案
如图,已知正方形ABCD的边长为4cm,动点P从点B出发,以2cm/s的速度、沿B→C→D方向,向点D运动;动点Q从点A出发,以1cm/s的速度、沿A→B方向,向点B运动.若P、Q两点同时出发,运动时间为t秒.
(1)连接PD、PQ、DQ,设△PQD的面积为S,试求S与t之间的函数关系式;
(2)当点P在BC上运动时,是否存在这样的t,使得△PQD是等腰三角形?若存在,请求出符合条件的t的值;若不存在,请说明理由;
(3)以点P为圆心,作⊙P,使得⊙P与对角线BD相切.问:当点P在CD上运动时,是否存在这样的t,使得⊙P恰好经过正方形ABCD的某一边的中点若存在,请求出符合条件的t的值;若不存在,请说明理由.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.