|
在如图所示的远距离输电电路中,升压变压器和降压变压器均为理想变压器,发电厂的输出电压和输电电线的电阻均不变。随着发电厂输出功率的增大,下列说法正确的有( )
A.升压变压器的输出电压增大 B.降压变压器的输出电压增大 C.输电线上损耗功率增大 D.输电线上损耗功率占总功率的比例增大
|
|
|
一列简谐横波沿x轴正方向传播,图(a)是t=0时刻的波形图,图(b)和图(c)分别是x轴上某两处质点的振动图像。由此可知,这两质点平衡位置之间的距离可能是( )
A.
|
|
|
某人造地球卫星因受高空稀薄空气的阻力作用,绕地球运转的轨道会慢慢改变.每次测量中卫星的运动可近似看作圆周运动,某次测量卫星的轨道半径为r1,后来变为r2,以Ek1、Ek2表示卫星在这两个轨道上的动能,T1、T2表示卫星在这两个轨道上绕地运动的周期,则( ) A.Ek2<Ek1、T2<T1 B.Ek2<Ek1、T2>T1 C.Ek2>Ek1、T2<T1 D.Ek2>Ek1、T2>T1
|
|
|
如图,半圆形玻璃砖置于光屏PQ的左下方。一束白光沿半径方向从A 点射入玻璃砖,在O点发生反射和折射,折射光在白光屏上呈现七色光带。若入射点由A向B缓慢移动,并保持白光沿半径方向入射到O点,观察到各色光在光屏上陆续消失。在光带未完全消失之前,反射光的强度变化以及光屏上最先消失的光分别是( )
A.减弱,紫光 B.减弱,红光 C.增强,紫光 D.增强, 红光
|
|
|
空间中P、Q两点处各固定一个点电荷,其中P点处为正电荷,P、Q两点附近电场的等势面分布如图所示,
A.P、Q两点处的电荷等量同种 B. C.c点的电势低于d点的电势 D.负电荷从
|
|
|
质点所受的力F随时间变化的规律如图所示,力的方向始终在一直线上。已知t=0时质点的速度为零。在图示t1、t2、t3和t4各时刻中,哪一时刻质点的动能最大( )
A.t1 B.t2 C.t3 D.t4
|
|
|
一个氢原子从n=3能级跃迁到n=2能级,该氢原子( ) A.放出光子,能量增加 B.放出光子,能量减少 C.吸收光子,能量增加 D.吸收光子,能量减少
|
|
|
(19分)如图(甲)所示,两足够长的平行光滑的金属导轨MN,PQ相距为L=1m,导轨平面与水平面夹角α=37°,导轨电阻不计.磁感应强度为B1=2T的匀强磁场垂直于导轨平面向上,长为L=1m的金属杆ab垂直于MN,PQ放置在导轨上,且始终与导轨接触良好,金属杆的质量为m1=2kg、电阻为R1=3Ω.两金属导轨的上端连接右侧电路,电路中通过导线接一对水平放置的平行金属板,两板间距离和板长均为d=1m,定值电阻为R2=1Ω.现闭合开关S并将金属杆由静止释放,取重力加速度g=10m/s2. (1)求金属杆沿导轨下滑的最大速率vm; (2)当金属杆稳定下滑时,在水平放置的平行金属板间加一垂直于纸面向里的匀强磁场B2=3T,在下板的右端C点且非常靠近下板的位置有一质量为m2=6×10-5kg、带电量为q=-1×10-4C的液滴以初速度v水平向左射入磁场,该液滴可视为质点,要使带电液滴能从金属板间射出,则初速度v满足什么条件? (3)若带电液滴射入的速度恰好使液滴从D点飞出,液滴从C点射入时,再从该磁场区域加一个如图(乙)所示的变化磁场(正方向与B2方向相同,不考虑磁场变化所产生的电场),求该带电液滴从C点射入到运动到D点所经历的时间t.
|
|
|
(17分)一绝缘“U”型杆由两段相互平行的足够长的竖直直杆PQ、MN和一半径为R的光滑半圆环QAN组成.固定在竖直平面内,其中杆PQ是光滑的,杆MN是粗糙的,整个装置处在水平向右的匀强电池中.在QN连线下方区域足够大的范围内同时存在垂直竖直平面向外的匀强磁场,磁感应强度为 (1)若将小环由C点静止释放,刚好能达到N点,求CQ间的距离; (2)在满足(1)问的条件下,小环第一次通过最低点A时受到圆环的支持力的大小; (3)若将小环由距Q点8R处静止释放,设小环与MN杆间的动摩擦因数为u,小环所受最大静摩擦力大小相等,求小环在整个运动过程则克服摩擦力所做的功.
|
|
|
(15分)图示为一固定在水平地面上的轨道ABC,AB与水平面间的夹角为θ=37°,BC水平.一小物体(可视为质点)放在A处,小物块与轨道AB间的动摩擦因数为u1=0.25,与轨道BC间的动摩擦因数u2=0.20.现在给小物体一个沿斜面向下的初速度v0=2m/s,小物体经过B处时无机械能损失,小物体最后停留在B点右侧4m处的C点(sin37°=0.6,cos37°=0.8,g取10m/s2).求: (1)小物体在AB面上运动时的加速度大小a; (2)小物体到达B处时的速度大小v; (3)斜面AB的长为L.
|
|
