如图所示,生产车间有两个相互垂直且等高的水平传送带甲和乙,甲的速度为v0,小工件离开甲前与甲的速度相同,并平稳地传到乙上,工件与乙之间的动摩擦因数为μ。乙的宽度足够大,重力加速度为g,则( ) A. 若乙的速度为 v0,工件在乙上侧向( 垂直于乙的运动方向)滑过的距离s= B. 若乙的速度为 2v0,工件从滑上乙到在乙上侧向滑动停止所用的时间不变 C. 若乙的速度为 2v0,工件在乙上刚停止侧向滑动时的速度大小v= D. 保持乙的速度 2v0 不变,当工件在乙上刚停止滑动时,下一只工件恰好传到乙上,如此反复. 若每个工件的质量均为m,除工件与传送带之间摩擦外,其他能量损耗均不计,驱动乙的电动机的平均输出功率
|
|
如图所示,一充电后的平行板电容器的两极板水平放置,板长为L,板间距离为d,距板右端L处有一竖直屏M。一带电荷量为q、质量为m的质点以初速度v0沿中线射入两板间,最后垂直打在M上,则下列结论正确的是(已知重力加速度为g)( ) A. 板间电场强度大小为 B. 两极板间电压为 C. 整个过程中质点的重力势能增加 D. 若仅增大两极板间距,则该质点不可能垂直打在M上
|
|
如图,足够长的U型光滑金属导轨平面与水平面成 A. 在该过程中,导体棒所受合外力做功为 B. 该过程中,通过电阻R的电荷量为 C. 该过程中,电阻R产生的焦耳热为 D. 导体棒获得初速度时,整个电路消耗的电功率为
|
|
火星表面很接近地球,是将来人类可能的居住地。已知火星的质量约为地球质量的 A. 火星表面的重力加速度约为9.8m/s2 B. 环绕火星运动的卫星的最大速度约为3.7km/s C. 火星的平均密度约为地球平均密度的一半 D. 火星同步卫星的运动半径等于地球同步卫星运动的半径
|
|
如图所示,质量为mA的物块A用不可伸长的细线吊着,在A的下方用弹簧连着质量为mB的物块B,开始时静止不动.现在B上施加一个竖直向下的力F,缓慢拉动B使之向下运动一段距离后静止,弹簧始终在弹性限度内,希望撤去力F后,B向上运动并能顶起A,则力F的最小值是 ( ) A. B. C. D.
|
|
一质点在0~10 s内,其v-t图象的图线恰好是与两坐标轴相切的圆弧,则( ) A. 0时刻,质点的加速度等于0 B. 10 s内质点的位移约为21.5 m C. 质点的加速度大小等于1m/s2时的速度等于4.5 m/s D. 质点的加速度随时间均匀减小
|
|
如图甲所示,一轻质弹簧的下端固定在水平面上,上端叠放两个质量均为M的物体A、B(B物体与弹簧连接),弹簧的劲度系数为k,初始时物体处于静止状态。现用竖直向上的拉力F用在物体A上,使物体A开始向上做加速度为a的匀加速运动,测得两个物体的v-t图象如图乙所示(重力加速度为g),则( ) A. 施加外力前,弹簧的形变量为2Mg/k B. 外力施加的瞬间,AB间的弹力大小为M(g-a) C. AB在t1时刻分离,此时弹簧弹力恰好为零 D. 弹簧恢复到原长时,物体B的速度达到最大值
|
|
一小球从地面上以某一初速度竖直向上抛出,运动过程中受到的阻力大小与速率成正比,在上升过程中,下列能正确反映小球的机械能E随上升高度h的变化规律(选地面为零势能参考平面)的是
|
|
某发电厂通过两条输电线向远处的用电设备供电,当发电厂输出的功率为P0时,额定电压为U的用电设备消耗的功率为P0的64%,若发电厂用一台理想升压变压器T1先把电压升高,仍通过原来的输电线供电,到达用电设备所在地,再通过一台理想降压变压器T2把电压降到用电设备的额定电压,供用电设备使用,如图所示,这样改动后,当发电厂输出的功率仍为P0,用电设备可增加若干获得的功率增至P0的96%。试求所用升压变压器的原线圈与副线圈的匝数比n1/n2以及降压变压器的原线圈与副线圈的匝数比n3/n4各为多少?
|
|
如图所示,开口向上竖直放置的内壁光滑气缸,其侧壁是绝热的,底部导热,内有两个质量均为m的密闭活塞,活塞A导热,活塞B绝热,将缸内理想气体分成Ⅰ、Ⅱ两部分.初状态整个装置静止不动且处于平衡状态,Ⅰ、Ⅱ两部分气体的高度均为l,温度为T.设外界大气压强为P保持不变,活塞横截面积为S,且mg=PS,环境温度保持不变.求:在活塞A上逐渐添加铁砂,当铁砂质量等于2m时,两活塞在某位置重新处于平衡,求:活塞B和A下降的高度分别多少?
|
|