如图,已知矩形ABCD,AB=![]() (1)求△PEF的边长; (2)在不添加辅助线的情况下,从图中找出一个除△PEF外的等腰三角形,并说明理由; (3)若△PEF的边EF在线段BC上移动.试猜想:PH与BE有何数量关系?并证明你猜想的结论. ![]() |
|
问题背景: 在△ABC中,AB、BC、AC三边的长分别为 ![]() ![]() ![]() 小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图①所示.这样不需求△ABC的高,而借用网格就能计算出它的面积. (1)请你将△ABC的面积直接填写在横线上______; 思维拓展: (2)我们把上述求△ABC面积的方法叫做构图法.若△ABC三边的长分别为 ![]() ![]() ![]() 探索创新: (3)若△ABC三边的长分别为 ![]() ![]() ![]() ![]() |
|
小明在如图所示粗糙的平面轨道上滚动一个半径为8cm的圆盘,已知,AB与CD是水平的,BC与水平方向夹角为60°,四边形BCDE是等腰梯形,CD=EF=AB=BC=40cm, (1)请作出小明将圆盘从A点滚动至F点其圆心所经过的路线示意图; ![]() (2)求出(1)中所作路线的长度. |
|
![]() (1)求圆形区域的面积(π取3.14); (2)某时刻海面上出现一渔船A,在观测点O测得A位于北偏东45°方向上,同时在观测点B测得A位于北偏东30°方向上,求观测点B到渔船A的距离(结果保留三个有效数字); (3)当渔船A由(2)中的位置向正西方向航行时,是否会进入海洋生物保护区?请通过计算解释. |
|
如图,菱形ABCD中,AB=2,∠C=60°,菱形ABCD在直线l上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次操作,则经过36次这样的操作菱形中心O所经过的路径总长为(结果保留π) .![]() |
|
在一个不透明的布袋中,红色、黑色、白色的玻璃球共有60个,除颜色外,形状、大小、质地等完全相同.小刚通过多次摸球实验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是 个. | |
“阳光体育”活动在滨江学校轰轰烈烈地开展,为了解同学们最喜爱的体育运动项目,小李对本班50名同学进行了跳绳、羽毛球、篮球、乒乓球、踢毽子等运动项目最喜爱人数的调查,并根据调查结果绘制了如下的人数分布直方图,若将其转化为扇形统计图,那么最喜爱打篮球的人数所在扇形区域的圆心角的度数为 .![]() |
|
如图,在第一象限内作射线OC,与x轴的夹角为30°,在射线OC上取一点A,过点A作AH⊥x轴于点H.在抛物线y=x2(x>0)上取点P,在y轴上取点Q,使得以P,O,Q为顶点的三角形与△AOH全等,则符合条件的点A的坐标是 .![]() |
|
“五•一”假期,某公司组织全体员工分别到西湖、动漫节、宋城旅游,购买前往各地的车票种类、数量如图所示.若公司决定采用随机抽取的方式把车票分配给员工,则员工小王抽到去动漫节车票的概率为 .![]() |
|
如图,有五张不透明的卡片除正面的数不同外,其余相同,将它们背面朝上洗匀后,从中随机抽取一张卡片,则抽到写着无理数的卡片的概率为 .![]() |
|