如图,已知抛物线的顶点坐标为M(1,4),且经过点N(2,3),与x轴交于A、B两点(点A在点B左侧),与y轴交于点C. (1)求抛物线的解析式及点A、B、C的坐标; (2)若直线y=kx+t经过C、M两点,且与x轴交于点D,试证明四边形CDAN是平行四边形; (3)点P在抛物线的对称轴x=1上运动,请探索:在x轴上方是否存在这样的P点,使以P为圆心的圆经过A、B两点,并且与直线CD相切?若存在,请求出点P的坐标;若不存在,请说明理由.
|
|
如图,已知⊙A半径为2,⊙B半径为1,AB=4,P为线段AB上的动点,且PC切⊙A于点C,PD切⊙B于点D. (1)已知PC2+PD2=4,求PB的长; (2)在线段AB上存在点P,使PC⊥PD,垂足为P,此时有△APC∽△PBD.请问:除此外,在线段AB上是否存在另一点P,使得△APC与△BPD相似?若存在,请问此时点P的位置在何处,同时判断此时直线PC与⊙B的位置关系并加以证明;若不存在,请说明理由.
|
|
某饮料厂开发了A、B两种新型饮料,主要原料均为甲和乙,每瓶饮料中甲、乙的含量如下表所示.现用甲原料和乙原料各2800克进行试生产,计划生产A、B两种饮料共100瓶.设生产A种饮料x瓶,解析下列问题: (1)有几种符合题意的生产方案写出解析过程; (2)如果A种饮料每瓶的成本为2.60元,B种饮料每瓶的成本为2.80元,这两种饮料成本总额为y元,请写出y与x之间的关系式,并说明x取何值会使成本总额最低?
|
|
某中学团委会为研究该校学生的课余活动情况,采取抽样的方法,从阅读、运动、娱乐、其它等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制了如下的两幅不完整的统计图(如图1,图2),请你根据图中提供的信息解答下列问题: (1)在这次研究中,一共调查了多少名学生? (2)“其它”在扇形图中所占的圆心角是多少度? (3)补全频数分布折线图.

|
|
先化简,再求值: ,其中a是方程x2+3x+1=0的根.
|
|
计算: .
|
|
如图,四边形ABCD是正方形,以BC边为直径在正方形内作半圆O,再过顶点A作半圆O的切线(切点为F)交CD边于E,则sin∠DAE= .
|
|
若a、b满足a2+2a-1=0,b2+2b-1=0,那么代数式 的值是 .
|
|
如图所示,在正方形ABCD中,AO⊥BD,OE,FG,HI都垂直于AD,EF,GH,IJ都垂直于AO,若已知S△AIJ=1,则正方形ABCD的面积为 .
|
|
如图,AB∥CD, ,△COD的周长为12cm,则△AOB的周长是 cm.
|
|