如图,四边形ABCD是菱形,点D的坐标是(0,![]() (1)求A、B、C三点的坐标; (2)求过A、B、C三点的抛物线的解析式; (3)若将上述抛物线沿其对称轴向上平移后恰好过D点,求平移后抛物线的解析式,并指出平移了多少个单位. ![]() |
|
如图,已知△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,过D作DE⊥BC,垂足为E,连接OE,CD=![]() (1)求证:DE是⊙O的切线; (2)分别求AB,OE的长; (3)填空:如果以点E为圆心,r为半径的圆上总存在不同的两点到点O的距离为1,则r的取值范围为______ ![]() |
|
安装在屋顶的太阳能热水器的横截面示意图如图所示.已知集热管AE与支架BF所在直线相交于水箱横截面⊙O的圆心O,⊙O的半径为0.2m,AO与屋面AB的夹角为32°,与铅垂线OD的夹角为40°,BF⊥AB于B,OD⊥AD于D,AB=2m,求屋面AB的坡度和支架BF的长. (参考数据:tan18°≈ ![]() ![]() ![]() ![]() |
|
“五一”期间,新华商场贴出促销海报,内容如图1.在商场活动期间,王莉和同组同学随机调查了部分参与活动的顾客,统计了200人次的摸奖情况,绘制成如图2所示的频数分布直方图.![]() ![]() (1)补齐频数分布直方图; (2)求所调查的200人次摸奖的获奖率; (3)若商场每天约有2000人次摸奖,请估算商场一天送出的购物券总金额是多少元? |
|
已知关于x的一元二次方程x2-6x+k=0有两个实数根. (1)求k的取值范围; (2)如果k取符合条件的最大整数,且一元二次方程x2-6x+k=0与x2+mx-1=0有一个相同的根,求常数m的值. |
|
小明在考试时看到一道这样的题目:“先化简![]() |
|
如图,已知小正方形ABCD的面积为1,把它的各边延长一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1边长按原法延长一倍得到正方形A2B2C2D2;以此下去…,则正方形A4B4C4D4的面积为 .![]() |
|
如图,△ABC是格点三角形(三角形的三个顶点都是小正方形的顶点),若以格点P、A、B为顶点的三角形与△ABC相似但不全等,则格点P的坐标是 .![]() |
|
如图,一副三角板拼在一起,O为AD的中点,AB=a.将△ABO沿BO对折于△A′BO,M为BC上一动点,则A′M的最小值为 .![]() |
|
某超市推出如下优惠方案: (1)一次性购物不超过100元不享受优惠; (2)一次性购物超过100元但不超过300元一律9折; (3)一次性购物超过300元一律8折. 小李两次购物分别付款80元,252元,如果他一次性购买以上两次相同的商品,应付款 元. |
|