在同一时刻,小明测得一棵树的影长是身高为1.6m的小华影长的5倍,则这棵树的高度为 m.
|
|
如图,AB是斜靠在墙上的梯子,梯脚B距墙2m,梯上的点D距墙1.2m,BD的长为1.2m,其中△ADE∽△ABC,梯子AB的长为 m.
|
|
雨后操场,小明从他前面2米远的一小块积水中看到了旗杆顶端的倒影,如果旗杆底端到积水的距离为20米,小明眼睛离地面1.5米,则旗杆的高度为 米.
|
|
阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,则窗口底边离地面的高BC= m.
|
|
在相同时刻的物高与影长成比例.小明的身高为1.5米,在地面上的影长为2米,同时一古塔在地面上的影长为40米,则古塔高为 米.
|
|
如图,为了测量水塘边A、B两点之间的距离,在可以看到的A、B的点E处,取AE、BE延长线上的C、D两点,使得CD∥AB,若测得CD=5m,AD=15m,ED=3m,则A、B两点间的距离为 m.
|
|
如图,路灯距地面8米,身高1.6米的小明从距离灯的底部(点O)20米的点A处,沿OA所在的直线行走14米到点B时,人影长度在A处为 米,在B处为 米.
|
|
在上午的某一时刻身高1.7米的小刚在地面上的投影长为3.4米,小明测得校园中旗杆在地面上的影子长16米,还有2米影子落在墙上,根据这些条件可以知道旗杆的高度为 米.
|
|
如图,有一所正方形的学校,北门(点A)和西门(点B)各开在北、西面围墙的正中间.在北门的正北方30米处(点C)有一颗大榕树.如果一个学生从西门出来,朝正西方走750米(点D),恰好见到学校北面的大榕树,那么这所学校占地 平方米.
|
|
某一时刻甲木杆高2米,它的影长是1.5米,小颖身高1.6米,那么此时她的影长为 米.
|
|