相关试题
当前位置:首页 > 初中数学试题

如图,抛物线y=ax2+bx(a≠0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.

(1)求抛物线的函数表达式.

(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?

(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.

 

如图,已知直线y=﹣2x+4x轴、y轴分别交于点AC,以OAOC为边在第一象限内作长方形OABC

(1)求点AC的坐标;

(2)将△ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式(图);

(3)在坐标平面内,是否存在点P(除点B外),使得△APC与△ABC全等?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.

 

如图,在⊙O中,C,D分别为半径OB,弦AB的中点,连接CD并延长,交过点A的切线于点E.

(1)求证:AECE.

(2)若AE=,sinADE=,求⊙O半径的长.

 

如图,已知点A(1,a)是反比例函数y1=的图象上一点,直线y2=﹣与反比例函数y1=的图象的交点为点BD,且B(3,﹣1),求:

Ⅰ)求反比例函数的解析式;

Ⅱ)求点D坐标,并直接写出y1y2x的取值范围;

Ⅲ)动点Px,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.

 

2013年某企业按餐厨垃圾处理费25/吨,建筑垃圾处理费16/吨标准,共支付餐厨和建筑垃圾处理费5200元,从2014年元月起,收费标准上调为:餐厨垃圾处理费100/吨,建筑垃圾处理费30/吨,若该企业2014年处理的这两种垃圾数量与2013年相比没有变化,就要多支付垃圾处理费8800元,

1)该企业2013年处理的餐厨垃圾和建筑垃圾各多少吨?

2)该企业计划2014年将上述两种垃圾处理量减少到240吨,且建筑垃圾处理费不超过餐厨垃圾处理量的3倍,则2014年该企业最少需要支付这两种垃圾处理费共多少元?

 

1是某市200945日至14日每天最低气温的折线统计图.

(1)图2是该市200745日至14日每天最低气温的频数分布直方图,根据图1提供的信息,补全图2中频数分布直方图;

(2)在这10天中,最低气温的众数是____,中位数是____,方差是_____

(3)请用扇形图表示出这十天里温度的分布情况.

 

(1)计算:||﹣(2﹣π)0+2cos45°.   

(2)解方程: =1﹣

 

新定义:我们把两条中线互相垂直的三角形称为中垂三角形.如图所示,△ABC中,AF、BE是中线,且AFBE,垂足为P,像△ABC这样的三角形称为中垂三角形,如果∠ABE=30°,AB=4,那么此时AC的长为_______

 

(1)解下列方程:①x2﹣2x﹣2=0;2x2+3x﹣1=0;2x2﹣4x+1=0;x2+6x+3=0;

(2)上面的四个方程中,有三个方程的一次项系数有共同特点,请你用代数式表示这个特点,并推导出具有这个特点的一元二次方程的求根公式_______

 

如图,在矩形ABCD中,AB=6,BC=8,点M,N同时从点B出发,分别在BC,BA上运动,若点M的运动速度是每秒2个单位长度,且是点N运动速度的2倍,当其中一个点到达终点时,停止一切运动.以MN为对称轴作△MNB的对称图形△MNB1.点B1恰好在AD上的时间为______秒.在整个运动过程中,△MNB1与矩形ABCD重叠部分面积的最大值为______

 

共1196510条记录 当前(22058/119651) 首页 上一页 22053 22054 22055 22056 22057 22058 22059 22060 22061 22062 22063 下一页 末页 转到 GO
Copyright @ 2019 满分5 学习网 ManFen5.COM. All Rights Reserved.