某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为( ) A. x(x+1)=1035 B. x(x﹣1)=1035×2 C. x(x﹣1)=1035 D. 2x(x+1)=1035
|
|
如图直线 AB、CD 、EF被直线a、b所截,若 A. EF∥CD∥AB B.
|
|
下列计算中,不正确的是( ) A. a2•a5=a10 B. a2﹣2ab+b2=(a﹣b)2 C. ﹣(a﹣b)=﹣a+b D. ﹣3a+2a=﹣a
|
|
由一些大小相同的小正方体搭成的几何体的主视图和左视图如图,则搭成该几何体的小正方体的个数最少是( ) A. 3 B. 4 C. 5 D. 6
|
|
相反数不大于它本身的数是( ) A. 正数 B. 负数 C. 非正数 D. 非负数
|
|
我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”. (1)概念理【解析】 如图1,在△ABC中,AC=6,BC=3,∠ACB=30°,试判断△ABC是否是”等高底”三角形,请说明理由. (2)问题探究: 如图2,△ABC是“等高底”三角形,BC是”等底”,作△ABC关于BC所在直线的对称图形得到△A'BC,连结AA′交直线BC于点D.若点B是△AA′C的重心,求 (3)应用拓展: 如图3,已知l1∥l2,l1与l2之间的距离为2.“等高底”△ABC的“等底”BC在直线l1上,点A在直线l2上,有一边的长是BC的
|
|
如图1,二次函数y=ax2﹣2ax﹣3a(a<0)的图象与x轴交于A、B两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D. (1)求顶点D的坐标(用含a的代数式表示); (2)若以AD为直径的圆经过点C. ①求抛物线的函数关系式; ②如图2,点E是y轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x轴于点F,若线段MF:BF=1:2,求点M、N的坐标; ③点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,如图3,求点Q的坐标.
|
|
如图①,已知直线y=﹣2x+4与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC. (1)求点A、C的坐标; (2)将△ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式(图②); (3)在坐标平面内,是否存在点P(除点B外),使得△APC与△ABC全等?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.
|
|
A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,L1,L2分别表示两辆汽车的s与t的关系. (1)L1表示哪辆汽车到甲地的距离与行驶时间的关系? (2)汽车B的速度是多少? (3)求L1,L2分别表示的两辆汽车的s与t的关系式. (4)2小时后,两车相距多少千米? (5)行驶多长时间后,A、B两车相遇?
|
|
如图,在Rt△ABC 中,∠C=90°,AD是∠BAC的角平分线,以AB上一点O为圆心,AD为弦作⊙O. (1)尺规作图:作出⊙O,并连接OD(不写作法与证明,保留作图痕迹); (2)求证:△OBD∽△ABC.
|
|