如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象的顶点为D点,与y轴交于C点,与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),OB=OC,![]() (1)求这个二次函数的表达式; (2)若平行于x轴的直线与该抛物线交于M、N两点,且以MN为直径的圆与x轴相切,求该圆半径的长度; (3)如图,若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点P运动到什么位置时,点P到直线AG的距离最大?求出此时P点的坐标和点P到直线AG的最大距离. ![]() |
|
(2009•三明)为把产品打入国际市场,某企业决定从下面两个投资方案中选择一个进行投资生产.方案一:生产甲产品,每件产品成本为a万美元(a为常数,且3<a<8),每件产品销售价为10万美元,每年最多可生产200件;方案二:生产乙产品,每件产品成本为8万美元,每件产品销售价为18万美元,每年最多可生产120件.另外,年销售x件乙产品时需上交0.05x2万美元的特别关税.在不考虑其它因素的情况下: (1)分别写出该企业两个投资方案的年利润y1、y2与相应生产件数x(x为正整数)之间的函数关系式,并指出自变量的取值范围; (2)分别求出这两个投资方案的最大年利润; (3)如果你是企业决策者,为了获得最大收益,你会选择哪个投资方案? |
|
(2009•云南)如图,小芸在自家楼房的窗户A处,测量楼前的一棵树CD的高.现测得树顶C处的俯角为45°,树底D处的俯角为60°,楼底到大树的距离BD为20米.请你帮助小芸计算树的高度(精确到0.1米).![]() |
|
如图,在Rt△ABC中,∠B=90°,它的内切圆分别与边BC、CA、AB相切于点D、E、F,连接AD与内切圆相交于另一点P,连接PC、PE、PF、FD,且PC⊥PF. 求证:(1)△PFD∽△PDC;(2) ![]() ![]() ![]() |
|
在正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.如果∠MAN在如图1所示的位置时,有BM+DN=MN成立(不必证明).请问当∠MAN绕点A旋转到如图2所示的位置时,线段BM、DN和MN之间又有怎样的数量关系?请说明理由.![]() |
|
(2009•三明)2009年4月1日《三明日报》发布了“2008年三明市国民经济和社会发展统计公报”,根据其中农林牧渔业产值的情况,绘制了如下两幅统计图,请你结合图中所给信息解答下列问题:![]() (1)2008年全市农林牧渔业的总产值为______亿元; (2)扇形统计图中林业所在扇形的圆心角为______度(精确到度); (3)补全条形统计图; (4)三明作为全国重点林区之一,市政府大力发展林业产业,计划2010年林业产值达60.5亿元,求今明两年林业产值的年平均增长率. |
|
如图,在等腰梯形ABCD,AD∥BC,G作GE∥DC,F是EC的中点,连接GF并延长交DC的延长线于点H. 求证:BG=CH. ![]() |
|
若实数x、y满足x2+2![]() ![]() ![]() ![]() ![]() |
|
(2009•乐山)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,⊙O为△ABC的内切圆,点D是斜边AB的中点,则tan∠ODA=( )![]() A. ![]() B. ![]() C. ![]() D.2 |
|
(2009•鄂尔多斯)下列事件中必然发生的事件是( ) A.一个不透明的袋子中有6个红球1个黑球,每次摸出一个球,然后放回搅匀、摸7次时一定会摸出一个黑球 B.任意一个五边形外角和等于540° C.平移后的图形与原来图形的对应线段相等 D.在一个不等式的两边同时乘以一个数,结果仍是不等式 |
|