满分5 > 高中数学试题 >

设函数f(x)的定义域为D,若存在非零实数l使得对于任意x∈M(M⊆D),有x+...

设函数f(x)的定义域为D,若存在非零实数l使得对于任意x∈M(M⊆D),有x+t∈D,且f(x+t)≥f(x),则称f(x)为M上的t高调函数.如果定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,且f(x)为R上的4高调函数,那么实数a的取值范围是   
根据分段函数的意义,对f(x)的解析式分段讨论,可得其分段的解析式,结合其奇偶性,可得其函数的图象;进而根据题意中高调函数的定义,可得若f(x)为R上的4高调函数,则对任意x,有f(x+4)≥f(x),结合图象分析可得4≥4a2;解可得答案. 【解析】 根据题意,当x≥0时,f(x)=|x-a2|-a2, 则当x≥a2时,f(x)=x-2a2, 0≤x≤a2时,f(x)=-x, 由奇函数对称性,有则当x≤-a2时,f(x)=x+2a2, -a2≤x≤0时,f(x)=-x, 图象如图:易得其图象与x轴交点为M(-2a2,0),N(2a2,0) 因此f(x)在[-a2,a2]是减函数,其余区间是增函数. f(x)为R上的4高调函数,则对任意x,有f(x+4)≥f(x), 故当-2a2≤x≤0时,f(x)≥0,为保证f(x+4)≥f(x),必有f(x+4)≥0;即x+4≥2a2; 有-2a2≤x≤0且x+4≥2a2可得4≥4a2; 解可得:-1≤a≤1; 故答案为-1≤a≤1.
复制答案
考点分析:
相关试题推荐
已知函数f(x)的定义域为R,则下列命题中:
①y=f(x)为偶函数,则y=f(x+2)的图象关于y轴对称;
②y=f(x+2)为偶函数,则y=f(x)关于直线x=2对称;
③若f(x-2)=f(2-x),则y=f(x)关于直线x=2对称;
④y=f(x-2)和y=f(2-x)的图象关于直线x=2对称.
其中正确命题序号有    .(填上所有正确命题序号) 查看答案
已知manfen5.com 满分网=    查看答案
已知A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},B⊆A,求m的取值范围.
查看答案
有下列命题:
①若f(x)存在导函数,则f′(2x)=[f(2x)]′;
②若函数h(x)=cos4x-sin4x,则h′(manfen5.com 满分网)=[h(manfen5.com 满分网)]′;
③若函数g(x)=(x-1)(x-2)…(x-2009)(x-2010),则g′(2010)=2009!;
④若三次函数f(x)=ax3+bx2+cx+d,则“a+b+c=0”是“f(x)有极值点”的充要条件.
其中真命题的序号是( )
A.③
B.①③④
C.①③
D.②③
查看答案
已知函数f(x)=-x-x3,x1、x2、x3∈R,且x1+x2>0,x2+x3>0,x3+x1>0,则f(x1)+f(x2)+f(x3)的值( )
A.一定大于零
B.一定小于零
C.等于零
D.正负都有可能
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.