满分5 > 高中数学试题 >

已知集合M={(x,y)|x+y=2},N={(x,y)|x-y=4},那么M∩...

已知集合M={(x,y)|x+y=2},N={(x,y)|x-y=4},那么M∩N为( )
A.x=3,y=-1
B.(3,-1)
C.{3,-1}
D.{(3,-1)}
将集合M与集合N中的方程联立组成方程组,求出方程组的解即可确定出两集合的交集. 【解析】 将集合M和集合N中的方程联立得: , ①+②得:2x=6, 解得:x=3, ①-②得:2y=-2, 解得:y=-1, ∴方程组的解为:, 则M∩N={(3,-1)}. 故选D
复制答案
考点分析:
相关试题推荐
已知集合A={x|x(x-1)=0},那么( )
A.0∈A
B.1∉A
C.-1∈A
D.0∉A
查看答案
在平面直角坐标系xOy中,点P(a,b)(a>b>0)为动点,F1,F2分别为椭圆manfen5.com 满分网的左、右焦点.已知△F1PF2为等腰三角形.
(Ⅰ)求椭圆的离心率e;
(Ⅱ)设直线PF2与椭圆相交于A,B两点,M是直线PF2上的点,满足manfen5.com 满分网,求点M的轨迹方程.
查看答案
已知椭圆manfen5.com 满分网的离心率为manfen5.com 满分网,右焦点为(manfen5.com 满分网,0),斜率为I的直线l与椭圆G交与A、B两点,以AB为底边作等腰三角形,顶点为P(-3,2).
(I)求椭圆G的方程;
(Ⅱ)求△PAB的面积.
查看答案
已知椭圆manfen5.com 满分网.过点(m,0)作圆x2+y2=1的切线I交椭圆G于A,B两点.
(I)求椭圆G的焦点坐标和离心率;
(Ⅱ)将|AB|表示为m的函数,并求|AB|的最大值.
查看答案
已知椭圆manfen5.com 满分网+manfen5.com 满分网=1经过点P(manfen5.com 满分网manfen5.com 满分网),离心率是manfen5.com 满分网,动点M(2,t)(t>0)
(1)求椭圆的标准方程;
(2)求以OM为直径且别直线3x-4y-5=0截得的弦长为2的圆的方程;
(3)设F是椭圆的右焦点,过点F做OM的垂线与以OM为直径的圆交于点N,证明线段ON长是定值,并求出定值.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.