①由于g(x)=2x-2≥0时,x≥1,根据题意有f(x)=m(x-2m)(x+m+3)<0在x>1时成立,根据二次函数的性质可求
②由于x∈(-∞,-4),f(x)g(x)<0,而g(x)=2x-2<0,则f(x)=m(x-2m)(x+m+3)>0在x∈(-∞,-4)时成立,结合二次函数的性质可求
【解析】
对于①∵g(x)=2x-2,当x<1时,g(x)<0,
又∵①∀x∈R,f(x)<0或g(x)<0
∴f(x)=m(x-2m)(x+m+3)<0在x≥1时恒成立
则由二次函数的性质可知开口只能向下,且二次函数与x轴交点都在(1,0)的左面
则
∴-4<m<0即①成立的范围为-4<m<0
又∵②x∈(-∞,-4),f(x)g(x)<0
∴此时g(x)=2x-2<0恒成立
∴f(x)=m(x-2m)(x+m+3)>0在x∈(-∞,-4)有成立的可能,则只要-4比x1,x2中的较小的根大即可
(i)当-1<m<0时,-m-3<-4不立
(ii)当m=-1时,有2等根,不成立
(iii)当-4<m<-1时,2m<-4即m<-2成立
综上可得①②成立时-4<m<-2
故答案为:(-4,-2)