数列{an}是公比为的等比数列,且1-a2是a1与1+a3的等比中项,前n项和为Sn;数列{bn}是等差数列,b1=8,其前n项和Tn满足Tn=n
·bn+1(
为常数,且
≠1).
(I)求数列{an}的通项公式及的值;
(Ⅱ)比较+
+
+
+
与
Sn的大小.
如图,在四棱柱ABCD-A1B1C1D1中,已知平面AA1C1C丄平面ABCD,且AB=BC=CA=,AD=CD=1.
求证:BD⊥AA1;
若四边形
是菱形,且
,求四棱柱
的体积.
已知向量,
设函数
.
求
的最小正周期与单调递增区间;
在
中,
分别是角
的对边,若
,
,
的面积为
,求
的值.
若直线与圆
:
交于
、
两点,且
、
两点关于直线
对称,则实数
的取值范围为_______.
挪威数学家阿贝尔,曾经根据阶梯形图形的两种不同分割(如下图),利用它们的面积关系发现了一个重要的恒等式——阿贝尔公式:
则其中:(I)L3= ;(Ⅱ)Ln= .
某三棱锥P-ABC的正视图为如图所示边长为2的正三角形,俯视图为等腰直角三角形,则三棱锥的表面积是_______.