为了研究过山车的原理,某物理小组提出了下列设想:取一个与水平方向夹角为θ=60°、长为L1=2m的倾斜轨道AB,通过微小圆弧与长为L2=
m的水平轨道BC相连,然后在C处设计一个竖直完整的光滑圆轨道,出口为水平轨道上D处,如图所示.现将一个小球从距A点高为h=0.9m的水平台面上以一定的初速度v0水平弹出,到A点时小球的速度方向恰沿AB方向,并沿倾斜轨道滑下.已知小球与AB和BC间的动摩擦因数均为μ=
,g取10m/s2.
(1)求小球初速度v0的大小;
(2)求小球滑过C点时的速率vC;
(3)要使小球不离开轨道,则竖直圆弧轨道的半径R应该满足什么条件?
如图所示,质量为m的木块放在光滑的水平桌面上,用轻绳绕过桌边光滑的定滑轮与质量为2m的砝码相连。把绳拉直后,使砝码从静止开始下降h的距离时砝码未落地,木块仍在桌面上,求此时砝码的速度大小以及轻绳对砝码做的功。
如图所示,假设某星球表面上有一倾角为θ=37°的固定斜面,一质量为m=2.0 kg的小物块从斜面底端以速度9 m/s沿斜面向上运动,小物块运动1.5 s时速度恰好为零.已知小物块和斜面间的动摩擦因数为0.25,该星球半径为R=1.2×103km.试求:(sin 37°=0.6,cos 37°=0.8)
(1)该星球表面上的重力加速度g的大小.
(2)该星球的第一宇宙速度.
某课外活动小组利用竖直上抛运动验证机械能守恒定律.
(1)某同学用20分度游标卡尺测量小球的直径,读数如图甲所示,小球直径为________cm.图乙所示弹射装置将小球竖直向上抛出,先后通过光电门A、B,计时装置测出小球通过A、B的时间分别为2.55 ms、5.15 ms,由此可知小球通过光电门A、B时的速度分别为vA、vB,其中vA=________m/s.
(2)用刻度尺测出光电门A、B间的距离h,已知当地的重力加速度为g,只需比较________(用题目中涉及的物理量符号表示)是否相等,就可以验证机械能是否守恒.
(3)通过多次实验发现,小球通过光电门A的时间越短,(2)中要验证的两数值差越大,试分析实验中产生误差的主要原因是_____________________________________________.
在探究“功和速度变化关系”的实验中,小张同学用如图所示装置,尝试通过测得细绳拉力(近似等于悬挂重物重力)做的功和小车获得的速度的值进行探究,则
(1)下列说法正确的是(____)
A.该方案需要平衡摩擦力
B.该方案需要重物的质量远小于小车的质量
C.该方案操作时细线应该与木板平行
D.该方案处理数据时应选择匀速时的速度
(2)某次实验获得的纸带如图所示,小张同学每隔4点标一个计数点,则C点的速度为________ m/s(计算结果保留3位有效数字);
(3)小张同学又设计了如图所示装置,尝试通过橡皮筋弹射小球的方式来探究“功和速度变化关系”,测得小球离地高度为h,弹射水平距离为L,重力加速度为g,则小球的抛出速度可表示为________.
图甲为的0.1kg小球从最低点A冲入竖直放置在水平地面上、半径为0.4m半圈轨道后,小球速度的平方与其高度的关系图像。已知小球恰能到达最高点C,轨道粗糙程度处处相同,空气阻力不计。g取10 m/s2,B为AC轨道中点。下列说法正确的是( )
A. 图甲中x=5
B. 小球从B到C损失了0.125J的机械能
C. 小球从A到C合外力对其做的功为-1.05J
D. 小球从C抛出后,落地点到A的更离为0.8m