如图所示,细筒足够长的气缸整体竖直固定不动,粗、细筒横截面积之比为2:1,P、Q是质量不计的绝热轻活塞,两活塞与筒壁间的摩擦不计。开始时,活塞P上方盛有水银,水银面与粗筒上端恰好相平且高为L,活塞Q将理想气体分成相同A、B两部分,气柱长均为L,温度为27℃。现通过电热丝对B部分理想气体加热,使活塞P、Q缓慢上移,已知 L=38 cm,大气压强为76 cmHg,问有一半的水银进入细筒时:(假设电热丝对B气体加热时,A气体温度不变)
(1)活塞Q上升的高度是多少?
(2)B部分理想气体温度为多少摄氏度?
下列说法正确的是___________
A.布朗运动反映了组成悬浮微粒的固体分子运动的不规则性
B.在水面上轻放一枚针,它会浮在水面,这是由于水面存在表面张力的缘故
C.物体温度升高时,物体内所有分子的热运动动能都增加
D.物体体积变大时,分子势能有可能增大,也有可能减小
E.—定质量的晶体在融化过程中,所吸收的热量全部用于增大分子势能
如图所示,平面直角坐标系xOy位于竖直平面内,M是一块平行x轴的挡板,与y轴交点的坐标为(0,),右端无限接近虚线POQ上的N点,粒子若打在挡板上会被挡板吸收。虚线POQ与x轴正方向的夹角为60°,其右侧区域I内存在垂直纸面向外的匀强磁场,磁感应强度为B,挡板上方区域II内存在垂直纸面向外的匀强磁场,磁感应强度为2B,挡板下方区域III内存在方向沿x轴正方向的匀强电场。O点有两个质量均为m,电荷量分别为+q的粒子a和-q的粒子b,以及一不带电的粒子c.。粒子重力不计,q>0。
(1)若粒子a从O点以速率υ0沿y轴正方向射人区域III,且恰好经过N点,求场强大小E;
(2)若粒子b从O点沿x轴正方向射人区域I,且恰好经过N点。求粒子b的速率vb;
(3)若粒子b从O点以(2)问中速率vb沿x轴正方向射人区域I的同时,粒子c也从0点以速率vc沿OQ方向匀速运动,最终两粒子相遇,求vc的可能值。
如图所示,相距L=0.5m足够长的两根光滑导轨与水平面成37°角,导轨电阻不计,导轨处在磁感应强度B=2T的匀强磁场中,磁场方向垂直导轨平面斜向上.ab、cd为水平金属棒且与导轨接触良好,它们的质量均为m=0.5kg、电阻均为R=2Ω.ab棒与一绝缘水平细绳相连处于静止状态,现让cd棒从静止开始下滑,直至与ab相连的细绳刚好被拉断,在此过程中cd棒电阻R上产生的热量为1J,已知细线能承受的最大拉力为T=5N,g=10m/s2,sin370=0.6,cos370=0.8.求细绳被拉断时:
(1)ab棒中电流的方向与大小
(2)cd棒的速度大小
(3)cd棒沿导轨下滑的距离
如图所示,在水平面MN的上方存在竖直向下的匀强电场,从空间某点A水平抛出质量为m、带电量为q的带正电粒子,在电场力的作用下经过时间t落到MN上的B点,测得A、B两点间的距离AB=L;若从A点水平抛出时的初速度增大到原来的3倍,则该粒子落到MN上的C点,测得A、C两点间的距离AC=L.不考虑带电粒子的重力和空气阻力,求:
(1)电场强度E的大小;
(2)带电粒子运动到C点时的速度大小.
某同学准备自己动手制作一个欧姆表,可以选择的器材如下:①电池E(电动势和内阻均未知)
②表头G(刻度清晰,但刻度值不清晰,量程Ig未知,内阻未知)
③电压表V(量程为1.5V,内阻Rv=1000Ω)
④滑动变阻器R1(0~10Ω)
⑤电阻箱R2(0~1000Ω)
⑥开关一个,理想导线若干
(1)为测量表头G的量程,该同学设计了如图甲所示电路。
图中电源即电池E. 闭合开关,调节滑动变阻器R1滑片至中间位置附近某处,并将电阻箱阻值调到40Ω时,表头恰好满偏,此时电压表V的示数为1.5V;将电阻箱阻值调到115Ω,微调滑动变阻器R1滑片位置,使电压表V示数仍为1.5V,发现此时表头G的指针指在如图乙所示位置,由以上数据可得表头G的内阻Rg=______Ω,表头G的量程Ig=_____mA.
(2)该同学接着用上述器材测量该电池E的电动势和内阻,测量电路如图丙所示,电阻箱R2的阻值始终调节为1000Ω:图丁为测出多组数据后得到的图线(U为电压表V的示数,I为表头G的示数),则根据电路图及图线可以得到被测电池的电动势E=______V,内阻r=______Ω.(结果均保留两位有效数字)
(3)该同学用所提供器材中的电池E、表头G及滑动变阻器制作成了一个欧姆表,利用以上(1)、(2)问所测定的数据,可知表头正中央刻度为____Ω.