满分5 > 高中数学试题 >

已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面...

已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=1,AB=2,M是PB的中点.
(1)求AC与PB所成的角余弦值;
(2)求二面角A-MC-B的余弦值.

manfen5.com 满分网
由“PA⊥底面ABCD,且∠DAB=90°”可知,此题建立空间直角坐标系相当方便.以A为坐标原点,AD长为单位长度,分别以AD、AB、AP为x、y、z轴,建立空间直角坐标系,求出各点坐标计算各题. (1)利用余弦定理可知:.所以,AC与PB所成的角余弦值为. (2)在MC上取一点N(x,y,z),要使AN⊥MC,只需,所以N点坐标为,∠ANB为所求二面角A-MC-B的平面角,则,所以所求二面角的余弦值为. 另【解析】 可以计算两个平面的法向量分别为:平面AMC的法向量,平面BMC的法向量为,=,所求二面角A-MC-B的余弦值为-. 证明:以A为坐标原点AD长为单位长度,如图建立空间直角坐标系,则各点坐标为. (1)【解析】 因, 故, 所以. 所以,AC与PB所成的角余弦值为. (2)【解析】 在MC上取一点N(x,y,z),则存在使,,∴. 要使AN⊥MC,只需即,解得. 可知当时,N点坐标为,能使. 此时,,有, 由得AN⊥MC,BN⊥MC.所以∠ANB为 所求二面角A-MC-B的平面角.∵. ∴.故所求的二面角的余弦值为.
复制答案
考点分析:
相关试题推荐
如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,BC=manfen5.com 满分网AD,PA=PD,Q为AD的中点.
(Ⅰ)求证:AD⊥平面PBQ;
(Ⅱ)若点M在棱PC上,设PM=tMC,试确定t的值,使得PA∥平面BMQ.

manfen5.com 满分网 查看答案
已知AB=2,AD=2manfen5.com 满分网,PA=2,底面ABCD是矩形,PA⊥底面ABCD,E是PC的中点.
求:
(1)三角形PCD的面积;
(2)异面直线BC与AE所成的角的大小.

manfen5.com 满分网 查看答案
已知manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
(1)计算manfen5.com 满分网,及manfen5.com 满分网
(2)求实数λ的值,使manfen5.com 满分网manfen5.com 满分网垂直.
查看答案
如图所示的几何体中,四边形ABCD是矩形,平面ABCD⊥平面ABE,已知AB=2,AE=BE=manfen5.com 满分网,且当规定正视图方向垂直平面ABCD时,该几何体的侧视图的面积为manfen5.com 满分网.若M、N分别是线段DE、CE上的动点,则AM+MN+NB的最小值为   
manfen5.com 满分网 查看答案
如图所示,AO⊥平面α,BC⊥OB,BC与平面α的夹角为30°,AO=BO=BC=a,则AC=   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.