满分5 > 高中数学试题 >

已知半径为5的圆的圆心在x轴上,圆心的横坐标是整数,且与直线4x+3y-29=0...

已知半径为5的圆的圆心在x轴上,圆心的横坐标是整数,且与直线4x+3y-29=0相切.
(Ⅰ)求圆的方程;
(Ⅱ)设直线ax-y+5=0(a>0)与圆相交于A,B两点,求实数a的取值范围;
(Ⅲ)在(Ⅱ)的条件下,是否存在实数a,使得弦AB的垂直平分线l过点P(-2,4),若存在,求出实数a的值;若不存在,请说明理由.
(Ⅰ)设圆心为M(m,0)(m∈Z).由于圆与直线4x+3y-29=0相切,且半径为5,所以 ,由此能求了圆的方程. (Ⅱ)把直线ax-y+5=0代入圆的方程,得(a2+1)x2+2(5a-1)x+1=0,由于直线ax-y+5=0交圆于A,B两点,故△=4(5a-1)2-4(a2+1)>0,由此能求出实数a的取值范围. (Ⅲ)设符合条件的实数a存在,则直线l的斜率为,l的方程为,由于l垂直平分弦AB,故圆心M(1,0)必在l上,由此推导出存在实数使得过点P(-2,4)的直线l垂直平分弦AB. (本小题满分14分) 【解析】 (Ⅰ)设圆心为M(m,0)(m∈Z). 由于圆与直线4x+3y-29=0相切,且半径为5, 所以 , 即|4m-29|=25.因为m为整数,故m=1. 故所求圆的方程为(x-1)2+y2=25. …(4分) (Ⅱ)把直线ax-y+5=0,即y=ax+5, 代入圆的方程,消去y, 整理,得(a2+1)x2+2(5a-1)x+1=0, 由于直线ax-y+5=0交圆于A,B两点, 故△=4(5a-1)2-4(a2+1)>0, 即12a2-5a>0, 由于a>0,解得a>, 所以实数a的取值范围是(). (Ⅲ)设符合条件的实数a存在, 则直线l的斜率为, l的方程为, 即x+ay+2-4a=0 由于l垂直平分弦AB,故圆心M(1,0)必在l上, 所以1+0+2-4a=0,解得. 由于,故存在实数 使得过点P(-2,4)的直线l垂直平分弦AB.…(14分)
复制答案
考点分析:
相关试题推荐
在直三棱柱ABC-A1B1C1中,AB=AC=AA1=3a,BC=2a,D是BC的中点,F是C1C上一点,且CF=2a.
(1)求证:B1F⊥平面ADF;
(2)求三棱锥D-AB1F的体积;
(3)试在AA1上找一点E,使得BE∥平面ADF.

manfen5.com 满分网 查看答案
已知直角△OAB的直角顶点O为原点,点A、B在抛物线y2=2px(p>0)上,原点在直线AB上的射影为点D(2,1),求抛物线的方程.
查看答案
已知两直线l1:ax-by+4=0,l2:(a-1)x+y+b=0.求分别满足下列条件的a,b的值.
(1)直线l1过点(-3,-1),并且直线l1与l2垂直;
(2)直线l1与直线l2平行,并且坐标原点到l1,l2的距离相等.
查看答案
已知命题p:x2-7x+10≤0,命题q:x2-2x+1-a2≤0(a>0),若p是q的充分不必要条件,求a的取值范围.
查看答案
若F是双曲线manfen5.com 满分网的一个焦点,P1、P2、P3、P4是双曲线上同一支上任意4个不同的点,且manfen5.com 满分网,则manfen5.com 满分网=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.