满分5 > 高中数学试题 >

已知数列an的前n项和Sn满足条件2Sn=3(an-1),其中n∈N*. (1)...

已知数列an的前n项和Sn满足条件2Sn=3(an-1),其中n∈N*
(1)求证:数列an成等比数列;
(2)设数列bn满足bn=log3an.若 manfen5.com 满分网,求数列tn的前n项和.
(1)直接利用an=Sn-Sn-1 (n≥2)和题中条件求出an和an-1的关系即可证得数列{an}为等比数列; (2)先由(1)的结论求出数列{bn}的通项公式,再代入求出数列{tn}的通项公式,最后用裂项相消法求数列{tn}的前n项和即可. 【解析】 (1)由题得(2分) 所以an=3an-1故有(4分) 又,解得a1=3, 所以数列an成等比数列(6分) (2)由(1)得an=3n,则bn=log3an=log33n=n(8分) 故有 所以(10分) =(14分) =(16分)
复制答案
考点分析:
相关试题推荐
已知函数f(x)=xlnx.  
(1)求函数f(x)的单调递减区间;
(2)若f(x)≥-x2+ax-6在(0,+∞)上恒成立,求实数a的取值范围.
查看答案
已知△ABC的角A、B、C所对的边分别是a、b、c,设向量manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
(1)若manfen5.com 满分网manfen5.com 满分网,求证:△ABC为等腰三角形;
(2)若manfen5.com 满分网manfen5.com 满分网,边长c=2,角C=manfen5.com 满分网,求△ABC的面积.
查看答案
对于一个有n项的数列P=(P1,P2,…,Pn),P的“蔡查罗和”定义为manfen5.com 满分网(S1+S2+…+Sn)其中Sk=(P1+P2+…+Pn)(1≤k≤n)若一个100项的数列(P1,P2,…,P100)的“蔡查罗和”为201.97,那么102项数列(1,1,P1,P2,…,P100)的“蔡查罗和”为    查看答案
(不等式选讲选做题)若关于x的不等式|x+1|-|x-2|<a2-4a有实数解,则实数a的取值范围是    查看答案
△ABC外接圆的半径为1,圆心为O,且manfen5.com 满分网manfen5.com 满分网,则manfen5.com 满分网manfen5.com 满分网=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.