满分5 > 高中数学试题 >

如图,在△ABC中,∠ABC=60°,∠BAC=90°,AD是高,沿AD把△AB...

如图,在△ABC中,∠ABC=60°,∠BAC=90°,AD是高,沿AD把△ABD折起,使∠BDC=90°.
manfen5.com 满分网
(Ⅰ)证明:平面ADB⊥平面BDC;
(Ⅱ)设E为BC的中点,求manfen5.com 满分网manfen5.com 满分网夹角的余弦值.
(Ⅰ)翻折后,直线AD与直线DC、DB都垂直,可得直线与平面BDC垂直,再结合AD是平面ADB内的直线,可得平面ADB与平面垂直; (Ⅱ)以D为原点,建立空间直角坐标系,分别求出D、B、C、A、E的坐标,从而得出向量、的坐标,最后根据空间向量夹角余弦公式,计算出与夹角的余弦值. 【解析】 (Ⅰ)∵折起前AD是BC边上的高, ∴当△ABD折起后,AD⊥DC,AD⊥DB, 又DB∩DC=D, ∴AD⊥平面BDC, ∵AD⊂平面ADB ∴平面ADB⊥平面BDC (Ⅱ)由∠BDC=90°及(Ⅰ)知DA,DB,DC两两垂直, 不防设|DB|=1,以D为坐标原点, 分别以、、所在直线x,y,z轴建立如图所示的空间直角坐标系, 易得D(0,0,0),B(1,0,0),C(0,3,0), A(0,0,),E(,,0), ∴=, =(1,0,0), ∴与夹角的余弦值为 cos<,>==.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中点.manfen5.com 满分网,求证:
(1)PA∥平面BDE;
(2)平面PAC⊥平面BDE.
查看答案
设圆的方程为x2+y2-4x-5=0,
(1)求该圆的圆心坐标及半径;
(2)若此圆的一条弦AB的中点为P(3,1),求直线AB的方程.
查看答案
如图:点P在正方体ABCD-A1B1C1D1的面对角线BC1上运动,则下列四个命题:
①三棱锥A-D1PC的体积不变;
②A1P∥面ACD1
③DP⊥BC1
④面PDB1⊥面ACD1
其中正确的命题的序号是    
manfen5.com 满分网 查看答案
已知△ABC和△DBC所在的平面互相垂直,且AB=BC=BD,∠CBA=∠DBC=120°,则AB与平面ADC所成角的正弦值为    查看答案
设某几何体的三视图如图所示,则该几何体表面积是   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.