满分5 > 高中数学试题 >

设U={1,2,3,4},且M={x∈U|x2-5x+P=0},若∁UM={2,...

设U={1,2,3,4},且M={x∈U|x2-5x+P=0},若∁UM={2,3},则实数P的值为( )
A.-4
B.4
C.-6
D.6
由全集U和集合M的补集确定出集合M,得到集合M中的元素是集合M中方程的解,根据韦达定理利用两根之积等于P,即可求出P的值. 【解析】 由全集U={1,2,3,4},CUM={2,3}, 得到集合M={1,4},即1和4是方程x2-5x+P=0的两个解, 则实数P=1×4=4. 故选B
复制答案
考点分析:
相关试题推荐
已知椭圆manfen5.com 满分网的离心率为manfen5.com 满分网,以原点为圆心,椭圆短半轴长为半径的圆与直线x-y+2=0相切,A,B分别是椭圆的左右两个顶点,P为椭圆C上的动点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若P与A,B均不重合,设直线PA与PB的斜率分别为k1,k2,证明:k1•k2为定值;
(Ⅲ)M为过P且垂直于x轴的直线上的点,若manfen5.com 满分网,求点M的轨迹方程,并说明轨迹是什么曲线.
查看答案
如图,在五面体ABCDEF中,FA⊥平面ABCD,AD∥BC∥FE,AB⊥AD,M为EC的中点,AF=AB=BC=FE=manfen5.com 满分网AD,
(1)求异面直线BF与DE所成的角的大小;
(2)证明平面AMD⊥平面CDE;
(3)求二面角A-CD-E的余弦值.

manfen5.com 满分网 查看答案
已知点 M(0,-1),F(0,1),过点M的直线l与曲线manfen5.com 满分网在x=-2处的切线平行.
(1)求直线l的方程;
(2)求以点F为焦点,l为准线的抛物线C的方程.
查看答案
如图,直棱柱(侧棱垂直于底面的棱柱) ABC-A1B1C1,在底面ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M,N分别为A1B1,A1A的中点.
(1)求manfen5.com 满分网的值;    
(2)求证:BN⊥平面C1MN.

manfen5.com 满分网 查看答案
中心在原点,一个焦点为F1(0,manfen5.com 满分网)的椭圆截直线y=3x-2所得的弦的中点的横坐标为manfen5.com 满分网,求椭圆的方程.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.