二次函数f(x)=ax
2+bx+c(a,b∈R,a≠0)满足条件:
①当x∈R时,f(x)的图象关于直线x=-1对称;②f(1)=1;③f(x)在R上的最小值为0;
(1)求函数f(x)的解析式;
(2)求最大的m(m>1),使得存在t∈R,只要x∈[1,m],就有f(x+t)≤x.
考点分析:
相关试题推荐
已知函数f(x)=x
2+2ax+2,x∈[-5,5],
(1)当a=1时,求f(x)的最大值和最小值;
(2)求实数a的取值范围,使y=f(x)在区间[-5,5]上是单调函数.
查看答案
已知函数f(x)是正比例函数,函数g(x)是反比例函数,且f(2)=6,g(3)=4
(1)求函数f(x)和g(x)的解析式;
(2)判断函数f(x)+g(x)的奇偶性.
查看答案
已知函数

,
(1)判断函数f(x)的单调性,并证明;
(2)求函数f(x)的最大值和最小值.
查看答案
计算:
(1)已知x>0,化简

(2)

.
查看答案
已知全集为U=R,A={x|-2<x<2},B={x|x<-1或x≥4}.求
(1)A∩B;
(2)A∪B;
(3)(∁
UA)∩(∁
UB).
查看答案