满分5 > 高中数学试题 >

定义在R上的单调函数f(x)满足f(3)=log23且对任意x,y∈R都有f(x...

定义在R上的单调函数f(x)满足f(3)=log23且对任意x,y∈R都有f(x+y)=f(x)+f(y).
(1)求证f(x)为奇函数;
(2)若f+f(3x-9x-2)<0对任意x∈R恒成立,求实数k的取值范围.
(1)欲证f(x)为奇函数即要证对任意x都有f(-x)=-f(x)成立.在式子f(x+y)=f(x)+f(y)中,令y=-x可得f(0)=f(x)+f(-x)于是又提出新的问题,求f(0)的值.令x=y=0可得f(0)=f(0)+f(0)即f(0)=0,f(x)是奇函数得到证明. (2)先将不等关系f(k•3x)+f(3x-9x-2)<0转化成f(k•3x)<f(-3x+9x+2),再结合函数的单调性去掉“f”符号,转化为整式不等关系,最后利用分离系数法即可求实数k的取值范围. 【解析】 (1)证明:f(x+y)=f(x)+f(y)(x,y∈R),① 令x=y=0,代入①式,得f(0+0)=f(0)+f(0),即f(0)=0. 令y=-x,代入①式,得f(x-x)=f(x)+f(-x),又f(0)=0,则有 0=f(x)+f(-x).即f(-x)=-f(x)对任意x∈R成立,所以f(x)是奇函数. (2)【解析】 f(3)=log23>0,即f(3)>f(0), 又f(x)在R上是单调函数, 所以f(x)在R上是增函数, 又由(1)f(x)是奇函数. f(k•3x)<-f(3x-9x-2)=f(-3x+9x+2), k•3x<-3x+9x+2, 令t=3x>0,分离系数得:, 问题等价于,对任意t>0恒成立. ∵, ∴.
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网,求f(x)的定义域,判断它的奇偶性,并求其值域.
查看答案
已知函数manfen5.com 满分网
(1)若x=1为f(x)的极值点,求a的值;
(2)若y=f(x)的图象在点(1,f(1))处的切线方程为x+y-3=0,求f(x)在区间[-2,4]上的最大值;
(3)当a≠0时,若f(x)在区间(-1,1)上不单调,求a的取值范围.
查看答案
已知向量manfen5.com 满分网manfen5.com 满分网互相垂直,其中manfen5.com 满分网
(1)求sinθ和cosθ的值;
(2)若manfen5.com 满分网,求cosφ的值.
查看答案
已知命题p:方程x2+mx+1=0有两上不相等的负实根,命题q:不等式4x2+4(m-2)x+1>0的解集为R,若p∨q为真命题,p∧q为假命题,求m的取值范围.
查看答案
设函数f(x)的定义域为D,若存在非零实数l使得对于任意x∈M(M⊆D),有x+t∈D,且f(x+t)≥f(x),则称f(x)为M上的t高调函数.如果定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,且f(x)为R上的4高调函数,那么实数a的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.