满分5 > 高中数学试题 >

设函数f(x)=tx2+2t2x+t-1(x∈R,t>0). (I)求f (x)...

设函数f(x)=tx2+2t2x+t-1(x∈R,t>0).
(I)求f (x)的最小值h(t);
(II)若h(t)<-2t+m对t∈(0,2)恒成立,求实数m的取值范围.
(I)由f(x)=t(x+t)2-t3+t-1(x∈R,t>0),根据配方法即可求出最小值; (II)令g(t)=h(t)-(-2t+m)=-t3+3t-1-m,对其求导后讨论即可得出答案. 【解析】 (I)∵f(x)=t(x+t)2-t3+t-1(x∈R,t>0), ∴当x=-t时,f(x)取最小值f(-t)=-t2+t-1, 即h(t)=-t3+t-1; (II)令g(t)=h(t)-(-2t+m)=-t3+3t-1-m, 由g′(t)=-3t2+3=0得t=1,t=-1(不合题意,舍去) 当t变化时g′(t)、g(t)的变化情况如下表:  t  (0,1) 1  (1,2)  g′(t) +  0 -  g(t)  递增  极大值1-m 递减  ∴g(t)在(0,2)内有最大值g(1)=1-m h(t)<-2t+m在(0,2)内恒成立等价于g(t)<0在(0,2)内恒成立, 即等价于1-m<0 所以m的取值范围为m>1.
复制答案
考点分析:
相关试题推荐
在△ABC中,角A,B,C所对的边分别为a,b,c,满足manfen5.com 满分网,且△ABC的面积为2.
(Ⅰ)求bc的值;
(Ⅱ)若b+c=6,求a的值.
查看答案
设函数manfen5.com 满分网
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)当manfen5.com 满分网时,求函数f(x)的最大值和最小值.
查看答案
已知命题p:“方程x2+mx+1=0有两个不相等的负实根”;命题q:“函数f(x)=lg(4x2+mx-2x+1)的值域为R”,若p或q为真,p且q为假,求实数m的取值范围.
查看答案
已知函数f(1+x)是定义域为R的偶函数,manfen5.com 满分网,f′(x)是f(x)的导函数,若∀x∈R,f′(x)<ex,则不等式manfen5.com 满分网(e=2.718…)的解集为    查看答案
直线y=1与曲线y=x2-|x|+a有四个交点,则a的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.