(1)取PC的中点H,连接FH,EH,证明四边形AEHF是平行四边形,然后利用直线与平面平行的判定定理证明AF∥平面PEC;
(2)连接AC,说明PC与平面ABCD所成的角的大小,就是∠PCA;在Rt△PAC中,求PC与平面ABCD所成的角的大小;
(3)延长CE至O,使得AO⊥CE于O,连接PO,说明∠POA就是二面角P-EC-D的大小,利用三角形相似,求出AO,在Rt△PAO中,求出二面角P-EC-D的大小.
【解析】
(1)取PC的中点H,连接FH,EH,
因为E、F分别是AB、PD的中点.
所以FH∥DC,FH=DC,又AB∥DC,
∴FH∥AE,并且FH=AE.
∴四边形AEHF是平行四边形,
∴AF∥EH,∵EH⊂平面PEC,AF⊄平面PEC,
所以AF∥平面PEC;
(2)连接AC,因为PA⊥平面ABCD,
所以PC与平面ABCD所成的角的大小,就是∠PCA;
因为底面ABCD是矩形,PA=AD=1,AB=2,
所以AC==,
在Rt△PAC中∴tan∠PCA==,
∠PCA=arctan.
(3)延长CE至O,使得AO⊥CE于O,
连接PO,因为PA⊥平面ABCD,
所以∠POA就是二面角P-EC-D的大小,
在Rt△AOE与Rt△EBC中,易得
Rt△AOE∽Rt△EBC,
所以,EC=,
所以AO===,
在Rt△PAO中,tan∠POA===,
所以所求的二面角P-EC-D的大小为:arctan.