满分5 > 高中数学试题 >

如图,正四棱柱ABCD-A1B1C1D1中,底面边长为,侧棱长为4.E,F分别为...

如图,正四棱柱ABCD-A1B1C1D1中,底面边长为manfen5.com 满分网,侧棱长为4.E,F分别为棱AB,BC的中点,EF∩BD=G.
(Ⅰ)求证:平面B1EF⊥平面BDD1B1
(Ⅱ)求点D1到平面B1EF的距离d;
(Ⅲ)求三棱锥B1-EFD1的体积V.

manfen5.com 满分网
(1)方法一:欲证明平面B1EF⊥平面BDD1B1,先证直线与平面垂直,观察平面BDD1B1为正四棱柱ABCD-A1B1C1D1的对角面,所以AC⊥平面BDD1B1,故连接AC,由EF∥AC,可得EF⊥平面BDD1B1 方法二:欲证明平面B1EF⊥平面BDD1B1,先证直线与平面垂直,由题意易得EF⊥BD,又EF⊥D1D,所以EF⊥平面BDD1B1 (2)本题的设问是递进式的,第(1)问是为第(2)问作铺垫的.由第(1)问可知,点D1到平面B1EF的距离d即为点D1到平面B1EF与平面BDD1B1的交线B1G的距离,故作D1H⊥B1G,垂足为H,所以点D1到平面B1EF的距离d=D1H.下面求D1H的长度. 解法一:在矩形BDD1B1及Rt△D1HB1中,利用三角函数可解. 解法二:在矩形BDD1B1及Rt△D1HB1中,利用三角形相似可解. 解法三:在矩形BDD1B1及△D1GB1中,观察面积大小关系可解. (3)本题的设问是递进式的,第(2)问是为第(3)问作铺垫的.解决三棱锥求体积的问题,关键在于找到合适的高与对应的底面,由第(2)问可知,D1H即为三棱锥B1-EFD1的高,所以B1EF为对应的底面. 【解析】 (Ⅰ)证法一: 连接AC. ∵正四棱柱ABCD-A1B1C1D1的底面是正方形, ∴AC⊥BD,又AC⊥D1D,故AC⊥平面BDD1B1. ∵E,F分别为AB,BC的中点,故EF∥AC, ∴EF⊥平面BDD1B1, ∴平面B1EF⊥平面BDD1B1. 证法二: ∵BE=BF,∠EBD=∠FBD=45°, ∴EF⊥BD.又EF⊥D1D ∴EF⊥平面BDD1B1, ∴平面B1EF⊥平面BDD1B1. (Ⅱ)在对角面BDD1B1中, 作D1H⊥B1G,垂足为H. ∵平面B1EF⊥平面BDD1B1, 且平面B1EF∩平面BDD1B1=B1G, ∴D1H⊥平面B1EF,且垂足为H, ∴点D1到平面B1EF的距离d=D1H. 解法一: 在Rt△D1HB1中,D1H=D1B1•sin∠D1B1H. ∵, , ∴ 解法二: ∵△D1HB1~△B1BG, ∴, ∴ 解法三: 连接D1G,则三角形D1GB1的面积等于正方形DBB1D1面积的一半, 即, ∴ (Ⅲ) =
复制答案
考点分析:
相关试题推荐
如图,过抛物线y2=2px(p>0)上一定点P(x,y)(y>0),作两条直线分别交抛物线于A(x1,y1),B(x2,y2
(I)求该抛物线上纵坐标为manfen5.com 满分网的点到其焦点F的距离
(II)当PA与PB的斜率存在且倾斜角互补时,求manfen5.com 满分网的值,并证明直线AB的斜率是非零常数.

manfen5.com 满分网 查看答案

x3456
y2.5344.5
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程manfen5.com 满分网
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)
查看答案
已知椭圆manfen5.com 满分网,过右焦点F2的直线l交椭圆于A、B两点,若|AB|=manfen5.com 满分网,求直线l的方程.
查看答案
如图,SA⊥平面ABC,AB⊥BC,过A作SB的垂线,垂足为E,过E作SC的垂线,垂足为F,
求证:(1)BC⊥面SAB;
(2)AF⊥SC.

manfen5.com 满分网 查看答案
以下四个关于圆锥曲线的命题中
①设A、B为两个定点,k为非零常数,|manfen5.com 满分网|-|manfen5.com 满分网|=k,则动点P的轨迹为双曲线;
②设定圆C上一定点A作圆的动点弦AB,O为坐标原点,若manfen5.com 满分网=manfen5.com 满分网manfen5.com 满分网+manfen5.com 满分网),则动点P的轨迹为椭圆;
③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
④双曲线manfen5.com 满分网-manfen5.com 满分网=1与椭圆manfen5.com 满分网+y2=1有相同的焦点.
其中真命题的序号为    (写出所有真命题的序号) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.