满分5 > 高中数学试题 >

设F1、F2分别为椭圆C:=1(a>b>0)的左、右两个焦点. (1)若椭圆C上...

设F1、F2分别为椭圆C:manfen5.com 满分网=1(a>b>0)的左、右两个焦点.
(1)若椭圆C上的点A(1,manfen5.com 满分网)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;
(2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程.
(1)把已知点的坐标代入椭圆方程,再由椭圆的定义知2a=4,从而求出椭圆的方程,由椭圆的方程求出焦点坐标. (2)设F1K的中点Q(x,y),则由中点坐标公式得点K(2x+1,2y),把K的坐标代入椭圆方程,化简即得线段KF1的中点Q的轨迹方程. 【解析】 (1)椭圆C的焦点在x轴上,由椭圆上的点A到F1、F2两点的距离之和是4,得2a=4,即a=2.…(2分) 又点A(1,)在椭圆上,因此=1得b2=3,于是c2=1.…(4分) 所以椭圆C的方程为=1,…(5分) 焦点F1(-1,0),F2(1,0).…(7分) (2)设椭圆C上的动点为K(x1,y1),线段F1K的中点Q(x,y)满足:,即x1=2x+1,y1=2y.…(11分) 因此=1.即为所求的轨迹方程.…(15分)
复制答案
考点分析:
相关试题推荐
已知tan2θ=-2manfen5.com 满分网,π<2θ<2π.
(Ⅰ)求tanθ的值;
(Ⅱ)求manfen5.com 满分网的值.
查看答案
给出下列四个命题;其中所有正确命题的序号是   
①函数f(x)=x|x|+bx+c为奇函数的充要条件是c=0;
②函数y=2-x(x>0)的反函数是y=-log2x(0<x<1);
③若函数f(x)=lg(x2+ax-a)的值域是R,则a≤-4或a≥0;
④若函数y=f(x-1)是偶函数,则函数y=f(x)的图象关于直线x=0对称. 查看答案
(x+1)5(2x+1)展开式中x2系数为    查看答案
有10名学生,其中4名男生,6名女生,从中任选2名学生,恰好是2名男生或2名女生的概率是    查看答案
在锐角三角形ABC中,已知manfen5.com 满分网的面积为manfen5.com 满分网,则manfen5.com 满分网的值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.