已知函数f(x)=x
2+mx+n的图象过点(1,3),且f(-1+x)=f(-1-x)对任意实数都成立,函数y=g(x)与y=f(x)的图象关于原点对称.
(1)求f(x)与g(x)的解析式;
(2)若F(x)=g(x)-λf(x)在[-1,1]上是增函数,求实数λ的取值范围.
考点分析:
相关试题推荐
已知点P是⊙O:x
2+y
2=9上的任意一点,过P作PD垂直x轴于D,动点Q满足
.
(1)求动点Q的轨迹方程;
(2)已知点E(1,1),在动点Q的轨迹上是否存在两个不重合的两点M、N,使
(O是坐标原点),若存在,求出直线MN的方程,若不存在,请说明理由.
查看答案
图为一简单集合体,其底面ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2.
(1)画出该几何体的三视图;
(2)求四棱锥B-CEPD的体积;
(3)求证:BE∥平面PDA.
查看答案
某高校在2009年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如图所示.
组号 | 分组 | 频数 | 频率 |
第1组 | [160,165) | 5 | 0.050 |
第2组 | [165,170) | ① | 0.350 |
第3组 | [170,175) | 30 | ② |
第4组 | [175,180) | 20 | 0.200 |
第5组 | [180,185) | 10 | 0.100 |
合计 | 100 | 1.00 |
(1)请先求出频率分布表中①、②位置相应数据,再在答题纸上完成下列频率分布直方图;
(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?
(3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官进行面试,求:第4组至少有一名学生被考官A面试的概率?
查看答案
已知电流I与时间t的关系式为I=Asin(ωt+φ).
(1)如图是I=Asin(ωt+φ)(ω>0,
)在一个周期内的图象,根据图中数据求I=Asin(ωt+φ)的解析式;
(2)如果t在任意一段
秒的时间内,电流I=Asin(ωt+φ)都能取得最大值和最小值,那么ω的最小正整数值是多少?
查看答案
(几何证明选讲选做题)已知PA是圆O(O为圆心)的切线,切点为A,PO交圆O于B,C两点,AC=
,∠PAB=30°,则圆O的面积为
.
查看答案