满分5 > 高中数学试题 >

已知函数f(x)=ln(ex+a)(a为常数)是实数集R上的奇函数,函数g(x)...

已知函数f(x)=ln(ex+a)(a为常数)是实数集R上的奇函数,函数g(x)=λf(x)+sinx是区间[-1,1]上的减函数.
(1)求g(x)在x∈[-1,1]上的最大值;
(2)若g(x)≤t2+λt+1对∀x∈[-1,1]及λ∈(-∞,-1]恒成立,求t的取值范围;
(3)讨论关于x的方程manfen5.com 满分网的根的个数.
(1)先利用f(x)是实数集R上的奇函数求出a,再利用g(x)=λf(x)+sinx是区间[-1,1]上的减函数求出g(-1)即可. (2)利用(1)的结论把问题转化为(t+1)λ+t2+sin1+1≥0在λ∈(-∞,-1]恒成立,再利用图形找到t满足的条件即可. (3)把研究根的个数问题转化为两个函数图象的交点问题,借助于图形可得结论. 【解析】 (1)f(x)=ln(ex+a)是奇函数,则ln(e-x+a)=-ln(ex+a)恒成立. ∴(e-x+a)(ex+a)=1.1+ae-x+aex+a2=1,∴a(ex+e-x+a)=0,∴a=0. 又∵g(x)在[-1,1]上单调递减,∴g(x)max=g(-1)=-λ-sin1, (2)只需-λ-sin1≤t2+λt+1在λ∈(-∞,-1]上恒成立, ∴(t+1)λ+t2+sin1+1≥0在λ∈(-∞,-1]恒成立. 令h(λ)=(t+1)λ+t2+sin1+1(λ≤-1),则 ∴而t2-t+sin1≥0恒成立,∴t≤-1. (3)由(1)知f(x)=x,∴方程为, 令, ∵, 当x∈(0,e)时,f′1(x)≥0,f1(x)在x∈(0,e]上为增函数; x∈[e,+∞)时,f′1(x)≤0,f1(x)在x∈[e,+∞)上为减函数, 当x=e时,. 而f2(x)=(x-e)2+m-e2, ∴函数f1(x)、f2(x)在同一坐标系的大致图象如图所示, ∴①当,即时,方程无解. ②当,即时,方程有一个根. ③当,即时,方程有两个根.
复制答案
考点分析:
相关试题推荐
在△ABC中,角A,B,C的对边依次为a,b,c,且A,B,C依次成等差数列.
(1)若manfen5.com 满分网manfen5.com 满分网=-manfen5.com 满分网,b=manfen5.com 满分网,求a+c的值;
(2)若A<C,求2sin2A+sin2C的取值范围.
查看答案
已知△ABC中,角A,B,C的对边分别为a,b,c,AH为BC边上有高,以下结论:①manfen5.com 满分网;②manfen5.com 满分网为锐角三角形③manfen5.com 满分网=csinB④manfen5.com 满分网=b2+c2-2bccosA,其中正确的个数是    查看答案
已知平面上的向量manfen5.com 满分网manfen5.com 满分网满足manfen5.com 满分网manfen5.com 满分网=2,设向量manfen5.com 满分网,则manfen5.com 满分网的最小值是     查看答案
△ABC内接于以O为圆心的圆,且∠AOB=60°.则∠C=    查看答案
椭圆manfen5.com 满分网的离心率manfen5.com 满分网,右焦点F(c,0),方程ax2+bx-c=0的两个根分别为x1,x2,则点P(x1,x2)与圆x2+y2=2的位置关系是     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.