满分5 > 初中数学试题 >

对非负实数x“四舍五入”到个位的值记为<x>, 即:当n为非负整数时,如果则<x...

对非负实数x“四舍五入”到个位的值记为<x>,
即:当n为非负整数时,如果manfen5.com 满分网则<x>=n.
如:<0>=<0.48>=0,<0.64>=<1.493>=1,<2>=2,<3.5>=<4.12>=4,…
试解决下列问题:
(1)填空:①<π>=______(π为圆周率);
②如果<2x-1>=3,则实数x的取值范围为______
(2)①当x≥0,m为非负整数时,求证:<x+m>=m+<x>;
②举例说明<x+y>=<x>+<y>不恒成立;
(3)求满足<x>=manfen5.com 满分网的所有非负实数x的值;
(4)设n为常数,且为正整数,函数manfen5.com 满分网的自变量x在n≤x<n+1范围内取值时,函数值y为整数的个数记为a,满足<manfen5.com 满分网>=n的所有整数k的个数记为b.求证:a=b=2n.
(1)π的十分位为1,应该舍去,所以精确到个位是3;如果精确数是3,那么这个数应在2.5和3.5之间,包括2.5,不包括3.5,让2.5≤2x-1<3.5,解不等式即可; (2)①分别表示出<x+m>和<x>,即可得到所求不等式;②举出反例说明即可,譬如稍微超过0.5的两个数相加; (3)x为整数,设这个整数为k,易得这个整数应在应在k-和k+之间,包括kx-,不包括k+,求得整数k的值即可求得x的非负实数的值; (4)易得二次函数的对称轴,那么可求得二次函数的函数值在相应的自变量的范围内取值,进而求得相应的a的个数;利用所给关系式易得的整数个数为2n,由此得证. 【解析】 (1)①3; ②由题意得:2.5≤2x-1<3.5,解得:; (2)①证明:设<x>=n,则为非负整数; ∴,且n+m为非负整数, ∴<x+m>=n+m=m+<x>. ②举反例:<0.6>+<0.7>=1+1=2,而<0.6+0.7>=<1.3>=1, ∴<0.6>+<0.7>≠<0.6+0.7>, ∴<x+y>=<x>+<y>不一定成立; (3)∵x≥0,为整数,设x=k,k为整数, 则, ∴, ∴, ∵O≤k≤2, ∴k=0,1,2, ∴x=0,,. (4)∵函数,n为整数, 当n≤x<n+1时,y随x的增大而增大, ∴,即,① ∴,∵y为整数, ∴y=n2-n+1,n2-n+2,n2-n+3,…,n2-n+2n,共2n个y, ∴a=2n,② ∵k>0,<>=n, 则,∴,③ 比较①,②,③得:a=b=2n.
复制答案
考点分析:
相关试题推荐
已知二次函数y=ax2+bx+c.
(1)当a=1,b=-2,c=1时,请在图上的直角坐标系中画出此时二次函数的图象;
(2)用配方法求该二次函数的图象的顶点坐标.

manfen5.com 满分网 查看答案
抛物线y=-x2+(m-1)x+m与y轴交于(0,3)点.
(1)求出m的值并画出这条抛物线;
(2)求它与x轴的交点和抛物线顶点的坐标;
(3)x取什么值时,抛物线在x轴上方?
(4)x取什么值时,y的值随x值的增大而减小?

manfen5.com 满分网 查看答案
小明为了通过描点法作出函数y=x2-x+1的图象,先取自变量x的7个值满足:
x2-x1=x3-x2=…=x7-x6=d,再分别算出对应的y值,列出表:
 x x1x2 x3 x4x5 x6x7
 y 1 713 21 31  43
记m1=y2-y1,m2=y3-y2,m3=y4-y3,m4=y5-y4,…;s1=m2-m1,s2=m3-m2,s3=m4-m3,…
(1)判断s1、s2、s3之间关系,并说明理由;
(2)若将函数“y=x2-x+1”改为“y=ax2+bx+c(a≠0)”,列出表:
x1 x2 x3 x4x5x6 x7
 y y1 y2y3y4y5y6 y7
其他条件不变,判断s1、s2、s3之间关系,并说明理由;
(3)小明为了通过描点法作出函数y=ax2+bx+c(a≠0)的图象,列出表:
 x x1x2 x3 x4x5 x6x7
 y 1050  110190 290 412  550
由于小明的粗心,表中有一个y值算错了,请指出算错的y值(直接写答案).
查看答案
已知二次函数y=-x2-2x+3的图象与x轴相交于A、B两点,与y轴交于C点(如图所示),点D在二次函数的图象上,且D与C关于对称轴对称,一次函数的图象过点B、D;
(1)求点D的坐标;
(2)求一次函数的解析式;
(3)根据图象写出使一次函数值大于二次函数值的x的取值范围.

manfen5.com 满分网 查看答案
已知抛物线y=x2-2x-3与x轴的右交点为A,与y轴的交点为B,求经过A、B两点的直线的解析式.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.