满分5 > 初中数学试题 >

如图,AB是⊙O的直径,点M是半径OA的中点,点P在线段AM上运动(不与点M重合...

如图,AB是⊙O的直径,点M是半径OA的中点,点P在线段AM上运动(不与点M重合).点Q在上半圆上运动,且总保持PQ=PO,过点Q作⊙O的切线交BA的延长线于点C.
(1)当∠QPA=90°时,判断△QCP是______三角形;
(2)当∠QPA=60°时,请你对△QCP的形状做出猜想,并给予证明;
(3)由(1)、(2)得出的结论,进一步猜想,当点P在线段AM上运动到任何位置时,△QCP一定是______三角形.

manfen5.com 满分网
(1)当∠QPA=90°时,由于∠QPO=∠QPA=90°,PQ=PO,则△OPQ是等腰直角三角形,∴∠QOA=45°.又由于OQ⊥CQ,所以∠C=45°,即△PQC是等腰直角三角形; (2)由等边对等角和三角形的外角与内角的关系知,∠C=90°-∠QOC=90°-30°=60°,故△QCP是等边三角形; (3)由于一直存在∠PQC=90°-∠OQP,∠C=90°-∠QOC,而∠QOC=∠OQP,∴∠C=∠PQC.故△QCP一定是等腰三角形. 【解析】 (1)等腰直角三角形; (2)当∠QPA=60°,△QCP是等边三角形. 证明:连接OQ. CQ是⊙O的切线, ∴∠OQC=90°. ∵PQ=PO, ∴∠PQO=∠QOP. ∴∠QOP+∠QCO=90°,∠OQP+∠CQP=90°, ∴∠QCO=∠CQP. ∴PQ=PC. 又∠QPA=60°, ∴△QCP是等边三角形; (3)等腰三角形.
复制答案
考点分析:
相关试题推荐
如图,PA为⊙O的切线,A为切点,PO交⊙O于点B,OA=3,OP=6,求∠BAP的度数.

manfen5.com 满分网 查看答案
如图,⊙O的直径AB=6cm,D为⊙O上一点,∠BAD=30°,过点D的切线交AB的延长线于点C.求∠ADC的度数及AC的长.

manfen5.com 满分网 查看答案
(人教版)已知:OA、OB是⊙O的半径,且OA⊥OB,P是射线OA上一点(点A除外),直线BP交⊙O于点Q,过Q作⊙O的切线交直线OA于点E.
(1)如图①,若点P在线段OA上,求证:∠OBP+∠AQE=45°;
(2)若点P在线段OA的延长线上,其它条件不变,∠OBP与∠AQE之间是否存在某种确定的等量关系?请你完成图②,并写出结论(不需要证明).
manfen5.com 满分网
查看答案
如图,已知AB是⊙O的直径,AC是弦,CD切⊙O于点C,交AB的延长线于点D,∠ACD=120°,BD=10.
(1)求证:CA=CD;
(2)求⊙O的半径.

manfen5.com 满分网 查看答案
已知:∠MAN=30°,O为边AN上一点,以O为圆心,2为半径作⊙O,交AN于D、E两点,设AD为x.manfen5.com 满分网
(1)如图1,当x为何值时,⊙O与AM相切;
(2)如图2,当x为何值时,⊙O与AM相交于B、C两点,且∠BOC=90度.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.