如图,Rt△ABC中,AC=8, BC=6,∠C=90°,⊙I分别切AC,BC,AB于D,E,F,求Rt△ABC的内心I与外心O之间的距离.
阅读材料:如图(1),△ABC的周长为L,内切圆O的半径为r,连结OA,OB,△ABC被划分为三个小三角形,用S△ABC表示△ABC的面积.
∵S△ABC =S△OAB +S△OBC +S△OCA
又∵S△OAB =AB·r,S△OBC =BC·r,S△OCA =AC·r
∴S△ABC =AB·r+BC·r+CA·r
=L·r(可作为三角形内切圆半径公式)
(1)理解与应用:利用公式计算边长分为5,12,13的三角形内切圆半径;
(2)类比与推理:若四边形ABCD存在内切圆(与各边都相切的圆,如图(2)且面积为S,各边长分别为a,b,c,d,试推导四边形的内切圆半径公式;
(3)拓展与延伸:若一个n边形(n为不小于3的整数)存在内切圆,且面积为S,各边长分别为a1,a2,a3,…an,合理猜想其内切圆半径公式(不需说明理由).
如图,已知△ABC的内切圆⊙O分别和边BC,AC,AB切于D,E,F,如果AF=2,BD=7,CE=4.
(1)求△ABC的三边长;
(2)如果P为上一点,过P作⊙O的切线,交AB于M,交BC于N,求△BMN的周长.
如图,已知正三角形ABC的边长为2a.
(1)求它的内切圆与外接圆组成的圆环的面积;
(2)根据计算结果,要求圆环的面积,只需测量哪一条弦的大小就可算出圆环的面积;
(3)将条件中的“正三角形”改为“正方形”“正六边形”,你能得出怎样的结论?
(4)已知正n边形的边长为2a,请写出它的内切圆与外接圆组成的圆环面积.
如图,⊙O为△ABC的内切圆,∠C=90°,AO的延长线交BC于点D,AC=4,DC=1,则⊙O的半径等于( )
A. B. C. D.
如图,在Rt△中,,,,将△绕点旋转至△的位置,且使点,,三点在同一直线上,则点经过的最短路线长是 .