满分5 > 初中数学试题 >

如图,已知射线DE与x轴和y轴分别交于点D(3,0)和点E(0,4).动点C从点...

如图,已知射线DE与x轴和y轴分别交于点D(3,0)和点E(0,4).动点C从点M(5,0)出发,以1个单位长度/秒的速度沿x轴向左作匀速运动,与此同时,动点P从点D出发,也以1个单位长度/秒的速度沿射线DE的方向作匀速运动.设运动时间为t秒.
(1)请用含t的代数式分别表示出点C与点P的坐标;
(2)以点C为圆心、manfen5.com 满分网t个单位长度为半径的⊙C与x轴交于A、B两点(点A在点B的左侧),连接PA、PB.
①当⊙C与射线DE有公共点时,求t的取值范围;
②当△PAB为等腰三角形时,求t的值.

manfen5.com 满分网
(1)根据题意,得t秒时,点C的横坐标为5-t,纵坐标为0;过点P作PQ⊥x轴于点Q,根据相似三角形对应边成比例列出比例式求出PQ、DQ再求出OQ,从而得解; (2)①当点A到达点D时,所用的时间是t的最小值,此时DC=OC-OD=5-t-3=t,得到t≥; 当圆C在点D左侧且与ED相切时,为t的最大值. 如图,易得Rt△CDF∽Rt△EDO,有,求解得到t的最大值. ②当△PAB为等腰三角形时,有三种情况:PA=AB,PA=PB,PB=AB.根据勾股定理,求得每种情况的t的值. 【解析】 (1)如图,t秒时,有PD=t,DE=5,OE=4,OD=3, 则PQ:EO=DQ:OD=PD:ED, ∴PQ=t,DQ=t. ∴C(5-t,0),. (2) ①当⊙C的圆心C由点M(5,0)向左运动,使点A到点D并随⊙C继续向左运动时, 有,即. 当点C在点D左侧时,过点C作CF⊥射线DE,垂足为F, 则由∠CDF=∠EDO, 得△CDF∽△EDO, 则, 解得. 由t,即,解得. ∴当⊙C与射线DE有公共点时,t的取值范围为. ②当PA=AB时,过P作PQ⊥x轴,垂足为Q. 有PA2=PQ2+AQ2=. ∴, 即9t2-72t+80=0, 解得. 当PA=PB时,有PC⊥AB,此时P,C横坐标相等, ∴, 解得t3=5; 当PB=AB时,有 , ∴, 即7t2-8t-80=0, 解得(不合题意,舍去). ∴当△PAB是等腰三角形时,,或t=4,或t=5,或. 又∵C是从M点向左运动的,故,或t=4,或t=5或.
复制答案
考点分析:
相关试题推荐
如图,在直角梯形ABCD中,AB∥CD,∠B=90°,AB=AD,∠BAD的平分线交BC于E,连接DE.
(1)说明点D在△ABE的外接圆上;
(2)若∠AED=∠CED,试判断直线CD与△ABE外接圆的位置关系,并说明理由.

manfen5.com 满分网 查看答案
如图,在Rt△ABC中,∠C=90°,AC=3,BC=4.动点O在边CA上移动,且⊙O的半径为2.
(1)若圆心O与点C重合,则⊙O与直线AB有怎样的位置关系?
(2)当OC等于多少时,⊙O与直线AB相切?

manfen5.com 满分网 查看答案
如图,在平面直角坐标系中,以A(5,1)为圆心,以2个单位长度为半径的⊙A交x轴于点B、C,解答下列问题:
(1)将⊙A向左平移______个单位长度与y轴首次相切,得到⊙A′,此时点A′的坐标为______,阴影部分的面积S=______
(2)求BC的长.

manfen5.com 满分网 查看答案
在四边形ABCD中,AB⊥BC,DC⊥BC,AB=a,DC=b,BC=a+b,且a≤b.取AD的中点P,连接PB、PC.
(1)试判断三角形PBC的形状;
(2)在线段BC上,是否存在点M,使AM⊥MD?若存在,请求出BM的长;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,将含30°角的直角三角板ABC(∠B=30°)绕其直角顶点A逆时针旋转α解(0°<α<90°),得到Rt△ADE,AD与BC相交于点M,过点M作MN∥DE交AE于点N,连接NC.设BC=4,BM=x,△MNC的面积为S△MNC,△ABC的面积为S△ABC
(1)求证:△MNC是直角三角形;
(2)试求用x表示S△MNC的函数关系式,并写出x的取值范围;
(3)以点N为圆心,NC为半径作⊙N,
①当直线AD与⊙N相切时,试探求S△MNC与S△ABC之间的关系;
②当S△MNC=manfen5.com 满分网S△ABC时,试判断直线AD与⊙N的位置关系,并说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.