|
如图所示,金属三角形导轨EOF上放有一根金属棒ab,拉动ab使它以速度v在匀强磁场中向右匀速平动,若导轨和金属棒都是粗细相同的均匀导体,它们的电阻率相同,则在ab运动过程中
A.感应电动势逐渐增大 B.感应电流逐渐增大 C.感应电流渐保持不变 D.金属棒受到安培力逐渐增大
|
|
|
如图1所示,在O≤x≤2L的区域内存在着匀强磁场, 磁场的方向垂直于xOy平面(纸面)向里,具有一定电阻的矩形线框abcd位于xOy平面内,线框的ab边与y轴重合,bc边的长度为L。线框从t=0时刻由静止开始沿x轴正方向做匀加速运动,则线框中的感应电流i(取顺时针方向的电流为正)随时间t的函数图象大致是图2中的
|
|
|
如图1所示电路中,S是闭合的,此时流过L的电流为i1,流过灯A的电流为i2,且i1<i2.在t1时刻将S断开,那么通过灯泡的电流随时间变化的图象是图2中的
|
|
|
一个面积S=4×10-2 m2、匝数n=100匝的线圈,放在匀强磁场中,磁场方向垂直于线圈平面,磁感应强度B随时间t变化的规律如图所示,0时刻磁感应强度B垂直线圈平面向里,则下列判断正确的是
A.t=1s时线圈中的电流方向发生变化 B.在开始的2 s内穿过线圈的磁通量的变化量等于零 C.1-2s内线圈中电流方向为顺时针方向 D.在第3 s末线圈中的感应电动势等于零
|
|
|
如图所示,粗糙水平桌面上有一质量为m的铜质矩形线圈.当一竖直放置的条形磁铁从线圈中线AB正上方等高快速经过时,若线圈始终不动,则关于线圈受到的支持力FN及在水平方向运动趋势的正确判断是
A.FN先小于mg后大于mg,运动趋势向左 B.FN先大于mg后小于mg,运动趋势向左 C.FN先大于mg后小于mg,运动趋势向右 D.FN先小于mg后大于mg,运动趋势向右
|
|
|
1831年法拉第把两个线圈绕在一个铁环上,A线圈与电源、滑动变阻器R组成一个回路,B线圈与开关S,电流表G组成另一个回路。如图所示,通过多次实验,法拉第终于总结出产生感应电流的条件。关于该实验下列说法正确的是
A.闭合开关S的瞬间,电流表G中有 B.闭合开关S的瞬间,电流表G中有 C.闭合开关S后,在增大电阻R的过程中,电流表G中有 D.闭合开关S后,在增大电阻R的过程中,电流表G中有
|
|
|
如图所示,半径为R的n匝线圈套在边长为a的正方形abcd之外,匀强磁场垂直穿过该正方形,当磁场以
A. C.
|
|
|
如图所示,矩形线圈与磁场垂直,且一半在匀强磁场内,一半在匀强磁场外,下述过程中使线圈产生感应电流的是
A.以bc为轴转动45° B.以ad为轴转动45° C.将线圈向下平移 D.将线圈向上平移
|
|
|
由法拉第电磁感应定律知(设回路的总电阻一定) A.穿过闭合回路的磁通量达到最大时,回路中的感应电流最大 B.穿过闭合回路的磁通量为零时,回路中的感应电流一定为零 C.穿过闭合回路的磁通量变化越大,回路中的感应电流越大 D.穿过闭合回路的磁通量变化越快,回路中的感应电流越大
|
|
|
(12分)如图所示,一带电微粒质量为m=2.0×10-11kg、电荷量q=+1.0×10-5C,从静止开始经电压为U1=100V的电场加速后,水平进入两平行金属板间的偏转电场中,微粒射出电场时的偏转角θ=30º,并接着进入一个方向垂直纸面向里、宽度为D=34.6cm的匀强磁场区域。已知偏转电场中金属板长L=20cm,两板间距d=17.3cm,重力忽略不计。
求:⑴带电微粒进入偏转电场时的速率v1; ⑵偏转电场中两金属板间的电压U2; ⑶为使带电微粒不会由磁场右边射出,该匀强磁场的磁感应强度B至少多大?
|
|
