设奇函数f(x)在[-1,1]上是增函数,f(-1)=-1.若函数f(x)≤t2-2at+1对所有的x∈[-1,1]都成立,则当a∈[-1,1]时,t的取值范围是 .
|
|
定义在R上的函数y=f(x),它同时具有下列性质: ①对任何x∈R均有f(x3)=[f(x)]3;②对任何x1,x2∈R,x1≠x2均有f(x1)≠f(x2). 则f(0)+f(-1)+f(1)= .
|
|
已知圆C:x2+y2=1,点A(-2,0)及点B(2,a),若从A点观察B点,要使视线不被圆C挡住,则a的取值范围是 .
|
|
现有一块长轴长为10dm,短轴长为8dm,形状为椭圆的玻璃镜子,欲从此镜中划一块面积尽可能大的矩形镜子,则可划出的矩形镜子的最大面积为 .
|
|
设等比数列{an}的公比为q,前n项和为Sn,若Sn+1,Sn,Sn+2成等差数列,则q的值为 .
|
|
已知直线x+3y-7=0和kx-y-2=0与x轴、y轴所围成的四边形有外接圆,则实数k的值是 .
|
|
根据流程图,当x取-5时,输出的结果是 .
|
|
在大小相同的5个球中,2个是红球,3个是白球,若从中任取2个,则所取的2个球中至少有一个红球的概率是 .
|
|
已知集合A={x|x≤1或x≥3},集合B={x|k<x<k+1,k∈R},且(CRA)∩B≠φ,则实数k的取值范围是 .
|
|
已知相交直线l和m都在平面α内,并且都不在平面β内,若p:l,m中至少有一条与β相交;q:α与β相交、则p是q的 条件.
|
|