如图,抛物线y=-2x2+x+1交y轴于点A,交x轴正半轴于点B.P为线段AB上一动点,作直线PC⊥PO,交过点B垂直于x轴的直线于点C.过P点作直线MN平行于x轴,交y轴于点M,交过点B垂直于x轴的直线于点N. (1)求线段AB长; (2)证明:OP=PC; (3)当点P在第一象限时,设AP长为m,△OBC的面积为S,请求出S与m间的函数关系式,并写出自变量m的取值范围; (4)当点P在线段AB上移动时,点C也随之在直线x=1上移动,△PBC是否可能成为等腰三角形?如果可能,求出所有能使△PBC成为等腰三角形的点P的坐标;如果不可能,请说明理由. ![]() |
|
已知∠MAN,AC平分∠MAN. (1)在图1中,若∠MAN=120°,∠ABC=∠ADC=90°,求证:AB+AD=AC; (2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由; (3)在图3中:①∠MAN=60°,∠ABC+∠ADC=180°,则AB+AD=______AC; ②若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,则AB+AD=______AC(用含α的三角函数表示),并给出证明. ![]() |
|
某公司开发了一种新型的家电产品,又适逢“家电下乡”的优惠政策.现投资40万元用于该产品的广告促销,已知该产品的本地销售量y1(万台)与本地的广告费用x(万元)之间的函数关系满足y1=![]() (1)结合图象,求出y2(万台)与外地广告费用t(万元)之间的函数关系式; (2)求该产品的销售总量y(万台)与本地广告费用x(万元)之间的函数关系式; (3)如何安排广告费用才能使销售总量最大? ![]() |
|
如图,AB是⊙O的直径,AD是弦,OC⊥AD于F,交⊙O于点E,∠BED=∠C. (1)求证:AC为⊙O的切线; (2)若OA=6,AC=8,求cos∠D的值. ![]() |
|
如图是反比例函数y=![]() (1)求该反比例函数的解析式; (2)若M、N分别在反比例函数图象的两支上,请指出什么情况下线段MN最短(不需证明),并求出线段MN长度的取值范围. ![]() |
|
如图,某数学兴趣小组在活动课上测量学校旗杆高度.已知小明的眼睛与地面的距离(AB)是1.7m,看旗杆顶部M的仰角为45°;小红的眼睛与地面的距离(CD)是1.5m,看旗杆顶部M的仰角为30度.两人相距28米且位于旗杆两侧(点B,N,D在同一条直线上).请求出旗杆MN的高度.(参考数据:![]() ![]() ![]() |
|
在5月27日结束的第49届世界乒乓球锦标赛中,男子单打决赛在我国选手马琳和五励勤之间展开,双方苦战七局,最终五励勤以4:3获得胜利,七局比分分别如下表:
|
|||||||||||||||||||||||||||||||||||||
解方程:(x-1)2+5(1-x)-6=0 |
|
解不等式组:![]() ![]() |
|
如图,点P在双曲线y=![]() ![]() |
|