甲、乙两人玩“锤子、石头、剪子、布”游戏,他们在不透明的袋子中放入形状、大小均相同的15张卡片,其中写有“锤子”、“石头”、“剪子”、“布”的卡片张数分别为2,3,4,6.两人各随机摸出一张卡片(先摸者不放回)来比胜负,并约定:“锤子”胜“石头”和“剪子”,“石头”胜“剪子”,“剪子”胜“布”,“布”胜“锤子”和“石头”,同种卡片不分胜负. (1)若甲先摸,则他摸出“石头”的概率是多少? (2)若甲先摸出了“石头”,则乙获胜的概率是多少? (3)若甲先摸,则他先摸出哪种卡片获胜的可能性最大? |
|
已知关于x的不等式ax+3>0(其中a≠0). (1)当a=-2时,求此不等式的解,并在数轴上表示此不等式的解集; (2)小明准备了十张形状、大小完全相同的不透明卡片,上面分别写有整数:-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,将这10张卡片写有整数的一面向下放在桌面上.从中任意抽取一张,以卡片上的数作为不等式中的系数a,求使该不等式没有正整数解的概率. |
|
一枚均匀的正方体骰子,六个面分别标有数字:1,2,3,4,5,6.如果用小刚抛掷正方体骰子朝上的数字x,小强抛掷正方体骰子朝上的数字y来确定点P(x,y),那么他们各抛掷一次所确定的点P落在已知直线y=-2x+7图象上的概率是多少? |
|
下表为抄录北京奥运会官方票务网公布的三种球类比赛的部分门票价格,某公司购买的门票种类、数量绘制的统计图表如下:
(1)其中观看足球比赛的门票有______张;观看乒乓球比赛的门票占全部门票的______%; (2)公司决定采用随机抽取的方式把门票分配给100名员工,在看不到门票的条件下,每人抽取一张(假设所有的门票形状、大小、质地完全相同且充分洗匀),问员工小华抽到男篮门票的概率是______; (3)若购买乒乓球门票的总款数占全部门票总款数的 ![]() ![]() |
|||||||||
一只口袋中放着若干只红球和白球,这两种球除了颜色以外没有任何其他区别,袋中的球已经搅匀,蒙上眼睛从口袋中取出一只球,取出红球的概率是![]() (1)取出白球的概率是多少? (2)如果袋中的白球有18只,那么袋中的红球有多少只? |
|
如图,随机闭合开关S1、S2、S3中的两个,求能让灯泡ⓧ发光的概率.![]() |
|
一个不透明口袋中装有红球6个,黄球9个,绿球3个,这些球除颜色处没有任何其他区别现.从中任意摸出一个球. (1)计算摸到的是绿球的概率. (2)如果要使摸到绿球的概率为 ![]() |
|
阅读对人成长的影响是很大的、希望中学共有1500名学生,为了了解学生课外阅读的情况,就“你最喜欢的图书类别”(只选一项)随机调查了部分学生,并将调查结果统计后绘制成如下统计表和条形统计图.请你根据统计图表提供的信息解答下列问题:
(2)把统计表和条形统计图补充完整; (3)随机调查一名学生,恰好是最喜欢文学类图书的概率是多少? ![]() |
|||||||||||||||
某种子培育基地用A,B,C,D四种型号的小麦种子共2 000粒进行发芽实验,从中选出发芽率高的种子进行推广.通过实验得知,C型号种子的发芽率为95%,根据实验数据绘制了图1和图2两幅尚不完整的统计图. (1)D型号种子的粒数是______; (2)请你将图2的统计图补充完整; (3)通过计算说明,应选哪一个型号的种子进行推广; (4)若将所有已发芽的种子放到一起,从中随机取出一粒,求取到B型号发芽种子的概率. ![]() |
|
某校一课外活动小组为了解学生最喜欢的球类运动情况,随机抽查本校九年级的200名学生,调查的结果如图所示.请根据该扇形统计图解答以下问题: (1)求图中的x的值; (2)求最喜欢乒乓球运动的学生人数; (3)若由3名最喜欢篮球运动的学生,1名最喜欢乒乓球运动的学生,1名最喜欢足球运动的学生组队外出参加一次联谊活动.欲从中选出2人担任组长(不分正副),列出所有可能情况,并求2人均是最喜欢篮球运动的学生的概率. ![]() |
|