小敏有红色、白色、黄色三件上衣,又有米色、白色的两条裤子.如果她最喜欢的搭配是白色上衣配米色裤子,那么黑暗中,她随机拿出一件上衣和一条裤子,正是她最喜欢搭配的颜色.请你用列表或画树状图,求出这样的巧合发生的概率是多少? |
|
有四张背面相同的纸牌A,B,C,D,其正面分别划有四个不同的稽核图形(如图).小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸出一张. (1)用树状图(或列表法)表示两次模牌所有可能出现的结果(纸牌可用A、B、C、D表示); (2)求摸出两张牌面图形都是中心对称图形的纸牌的概率. ![]() |
|
妞妞和她的爸爸玩“锤子、剪刀、布”游戏.每次用一只手可以出锤子、剪刀、布三种手势之一,规则是锤子赢剪刀、剪刀赢布、布赢锤子,若两人出相同手势,则算打平. (1)你帮妞妞算算爸爸出“锤子”手势的概率是多少? (2)妞妞决定这次出“布”手势,妞妞赢的概率有多大? (3)妞妞和爸爸出相同手势的概率是多少? |
|
将5个完全相同的小球分装在甲、乙两个不透明的口袋中.甲袋中有3个球,分别标有数字2,3,4;乙袋中有2个球,分别标有数字2,4.从甲、乙两个口袋中各随机摸出一个球. (1)用列表法或画树状图法,求摸出的两个球上数字之和为5的概率. (2)摸出的两个球上数字之和为多少时的概率最大? |
|
某公司现有甲、乙两种品牌的计算器,甲品牌计算器有A,B,C三种不同的型号,乙品牌计算器有D,E两种不同的型号,新华中学要从甲、乙两种品牌的计算器中各选购一种型号的计算器. (1)写出所有的选购方案(利用树状图或列表方法表示); (2)如果(1)中各种选购方案被选中的可能性相同,那么A型号计算器被选中的概率是多少? (3)现知新华中学购买甲、乙两种品牌计算器共40个(价格如图所示),恰好用了1000元人民币,其中甲品牌计算器为A型号计算器,求购买的A型号计算器有多少个? ![]() |
|
在一个不透明的口袋中装有红、白、黑三种颜色的小球若干个,它们只有颜色不同,其中有白球2个、黑球1个.已知从中任意摸出1个球得白球的概率为![]() (1)求口袋里有多少个红球; (2)求从袋中一次摸出2个球,得一红一白的概率.要求画出树状图. |
|
有四张背面相同的纸牌A,B,C,D,其正面分别画有四个不同的几何图形(如图).小明将这4张纸牌背面朝上洗匀后摸出一张,将剩余3张洗匀后再摸出一张. (1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A,B,C,D表示); (2)求摸出的两张牌面图形既是轴对称图形又是中心对称图形纸牌的概率. ![]() |
|
在物理实验中,当电流在一定时间段内正常通过电子元件时,每个电子元件的状态有两种可能:通电或断开,并且这两种的可能性相等.![]() (1)如图1,当只有一个电子元件时,A、B之间的电流通过概率是______; (2)如图2,当有两个电子元件a、b串联时,请用树状图(或列表格)表示图中A、B之间的电流能否通过的所有可能情况,求出A、B之间的电流通过的概率; (3)如图3,当有三个电子元件串联时,猜想A,B之间电流通过的概率是______. |
|
在一个布口袋中装有只有颜色不同,其它都相同的白、红、黑三种颜色的小球各1只,甲乙两人进行摸球游戏;甲先从袋中摸出一球看清颜色后放回,再由乙从袋中摸出一球. (1)试用树状图(或列表法)表示摸球游戏所有可能的结果; (2)如果规定:乙摸到与甲相同颜色的球为乙胜,否则为负,试求乙在游戏中能获胜的概率. |
|
一个不透明的盒子中放有四张分别写有数字1,2,3,4的红色卡片和三张分别写有数字1,2,3的蓝色卡片,卡片除颜色和数字外完全相同. (1)从中任意抽取一张卡片,求该卡片上写有数字1的概率; (2)将3张蓝色卡片取出后放入另外一个不透明的盒子内,然后在两个盒子内各任意抽取一张卡片,以红色卡片上的数字作为十位数,蓝色卡片上的数字作为个位数组成一个两位数,求这个两位数大于22的概率. |
|