已知一棵树的影长是30m,同一时刻一根长1.5m的标杆的影长为3m,则这棵树的高度是( ) A.15m B.60m C.20m D.10 ![]() |
|
阳光通过窗口AB照射到室内,在地面上留下2.7米的亮区DE(如图所示),已知亮区到窗口下的墙角的距离EC=8.7米,窗口高AB=1.8米,则窗口底边离地面的高BC为( )![]() A.4米 B.3.8米 C.3.6米 D.3.4米 |
|
某校计划在一块三角形的空地上修建一个面积最大的正方形水池,使得水池的一边在△ABC的边BC上,△ABC中边BC=60m,高AD=30m,则水池的边长应为( ) A.10m B.20m C.30m D.40m |
|
一根1.5米长的标杆直立在水平地面上,它在阳光下的影长为2.1米;此时一棵水杉树的影长为10.5米,这棵水杉树高为( ) A.7.5米 B.8米 C.14.7米 D.15.75米 |
|
如图,CD是平面镜子,光线从A点射出,经CD上一点E反射后照射到B点,若入射角为α,AC⊥CD,BD⊥CD,垂足分别为C、D,且AC=3,BD=6,CD=10,则线段ED的长为( )![]() A. ![]() B. ![]() C.7 D. ![]() |
|
相同时刻的物高与影长成比例,若一座房子在地面上影长是30m,同时一位身高160cm的人的影长是2.4m,则这座房子的高是( ) A.20m B.2000m C.45m D.4500m |
|
如图,有点光源S在平面镜上方,若在P点看到点光源的反射光线,并测得AB=10cm,BC=20cm,PC⊥AC,且PC=24cm,点光源S到平面镜的距离即SA的长度为( )![]() A.11cm B.12cm C.13cm D.14cm |
|
为测量被荷花池相隔的两树A,B的距离,数学活动小组设计了如图所示的测量方案:在AB的垂线AP上取两点C,E,再定出AP的垂线FE,使F,C,B在一条直线上.其中三位同学分别测量出了三组数据:①AC,BC ②AC,CE ③EF,CE,AC.能根据所测数据,求得A,B两树距离的是( )![]() A.② B.①② C.②③ D.①③ |
|
小亮从报纸上剪下的某产品的标志图案,最长边为2.2cm,最短边为1.8cm,有一天,小亮看到路边的灯箱广告上也有这个图案,他测量得到最短边为0.9m,于是便知道了灯箱广告上的最长边为( ) A.4.4cm B.44cm C.110cm D.100cm |
|
阳光通过窗口照到室内,在地上留下2.7m宽的亮区(如图),已知亮区一边到窗下的墙角的距离CE=8.7m,窗口高AB=1.8m,那么窗口底边离地面的高BC等于( )![]() A.2m B.4m C.6m D.1m |
|