如图,在平面直角坐标系中,四边形ABCO是梯形,其中A(6,0),B(3, (1)求经过A、B、C三点的抛物线的解析式; (2)当点Q在CO边上运动时,求△OPQ的面积S与时间t的函数关系式; (3)以O、P、Q为顶点的三角形能构成直角三角形吗?若能,请求出t的值,若不能,请说明理由; (4)经过A、B、C三点的抛物线的对称轴、直线OB和PQ能够交于一点吗?若能,请求出此时t的值(或范围),若不能,请说明理由.
|
|
某公司生产的一种健身产品在市场上受到普遍欢迎,每年可在国内、国外市场上全部售完,该公司的年产量为6千件,若在国内市场销售,平均每件产品的利润 (1)用 (2)求每年该公司销售这种健身产品的总利润W(千元)与国内的销售数量x(千件)的函数关系式,并指出x的取值范围; (3)该公司每年国内、国外的销量各为多少时,可使公司每年的总利润最大?最大值为多少?
|
|
如图,小山顶上有一信号塔AB,山坡BC的倾角为30°,现为了测量塔高AB,测量人员选择山脚C处为一测量点,测得塔顶仰角为45°,然后顺山坡向上行走100米到达E处,再测得塔顶仰角为60°,求塔高AB.(结果保留整数
|
|
为支援四川雅安地震灾区,某市民政局组织募捐了240吨救灾物资,现准备租用甲、乙两种货车,将这批救灾物资一次性全部运往灾区,它们的载货量和租金如下表:
如果计划租用6辆货车,且租车的总费用不超过2300元,求最省钱的租车方案.
|
||||||||||
如图,AB为⊙O的直径,C为⊙O上一点,AD的过C点的直线互相垂直,垂足为D,且AC平分∠DAB. (1)求证:DC为⊙O的切线; (2)若⊙O的半径为3,AD=4,求AC的长.
|
|
如图,有四张背面相同的纸牌A、B、C、D,其正面分别是红桃、方块、黑桃、梅花,其中红桃、方块为红色,黑桃、梅花为黑色,小明将这4张纸牌背面朝上洗匀后,摸出一张,将剩余3张洗匀后再摸出一张. (1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A、B、C、D表示); (2)求摸出的两张牌同为红色的概率
|
|
为了倡导“节约用水,从我做起”,黄岗市政府决定对市直机关500户家庭的用水情况作一次调查,市政府调查小组随机抽查了其中的100户家庭一年的月平均用水量(单位:吨),并将调查结果制成了如图所示的条形统计图. (1)请将条形统计图补充完整; (2)求这100个样本数据的平均数,众数和中位数; (3)根据样本数据,估计黄岗市直机关500户家庭中月平均用水量不超过12吨的约有多少户?
|
|
如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于H,连接OH,求证:∠DHO=∠DCO.
|
|
解方程组:
|
|
如图,矩形ABCD中,AB=4,BC=3,边CD在直线L上,将矩形ABCD沿直线L作无滑动翻滚,当点A第一次翻滚到点A1位置时,则点A经过的路线长为 .
|
|